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Abstract

Obesity is a chronic disease with associated
increases in the incidence, and a reduction in survival,
of many cancer types. Obesity results from an imbal-
ance in calorie intake and calorie requirement. This
study aimed to investigate the separate effects of high-
fat diet and obesity on cancer in an animal model resis-
tant to diet-induced obesity. Male BALB/c mice fed
long-term on a high-fat, Western-style diet were im-
planted with syngeneic CT26 colon adenocarcinoma
cells and compared to mice fed normal diet. BALB/c
mice on high-fat diet were 10% heavier than mice fed
normal diet, with no difference in tumour growth rates

or tumour cell proliferation. Subgroups of mice that
became obese on high-fat diet, however, showed in-
creased tumour growth rates compared to mice fed
normal diet, whereas mice that remained slim showed
no difference in tumour growth. Protein arrays identi-
fied several adipokines that were expressed at different
levels in the subgroups, including serum Tissue Inhibi-
tors of Metallo-Proteinases (TIMP-1) and tumour C-
Reactive Protein (CRP). In conclusion, tumour growth
was enhanced in mice unable to resist obesity, and adi-
pokine profiles were affected by the animals’ ability to
resist obesity.

Introduction

There is convincing epidemiological evidence that
body fatness is a strong risk factor for a range of can-
cers, including colorectal, breast, pancreatic, endo-
metrial and ovarian, with over 20% of obesity-
associated cancers in the US attributable to excess adi-
posity per se (World Cancer Research Fund 2007).
Increased adiposity is not only associated with in-
creased cancer incidence, but also with increased mor-
tality and reduced survival following cancer diagnosis
(Parekh et al. 2012). Specifically, for patients with co-
lorectal cancer, pre-diagnostic body mass index (BMI)
is predictive of response to therapy and survival
(Campbell et al. 2012, Meyerhardt et al. 2004). The
mechanisms underlying this association are under in-
tense investigation, but have not been resolved.
Chronic inflammation is a plausible link between obe-
sity and cancer, but other factors will also be contribut-
ing (Park et al. 2014).
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Obesity results from an imbalance in calorie
intake and calorie requirement, and is modulated by
genetic predisposition. For this study, obesity-resistant
BALB/c mice (Fearnside et al. 2008, Montgomery et
al. 2013, Nishikawa et al. 2012, Waller-Evans et al.
2013) fed a Western-style, high-fat diet were chosen.
These wild type mice are immune-competent, which is
essential to study the inflammatory effects of obesity,
and thus require syngeneic mouse tumours, such as the
CT26 colon adenocarcinoma (Meijer et al. 2008). This
study aimed to investigate the associations between
diet, obesity and cancer risk, and specifically, the sepa-
rate effects of high fat diet and obesity in an animal
model with cancer.

Materials and Methods

Ethics
Approval for this study was obtained from the Univer-
sity of Otago Animal Ethics Committee (ethics ap-
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proval number C6/10). International guidelines on ani-
mal welfare were strictly followed (Workman et al.
2010).

Mouse model

BALB/c mice were bred in-house, and male mice were
chosen after weaning. Mice were weighed at least once
a week. Due to fighting, male mice were all housed
singly for the last 4 months of the study. Mice fed on
high fat diet were divided into subgroups according to
their final body weight; HFF >35g, HFM 32-35g, HFS
<32g.

Diet

Male mice (4 weeks old), following weaning, were
randomly divided into two groups, with one of the
groups allowed to feed ad libitum on a defined high fat
diet (HF, ‘Western fast food’ diet from Speciality
Feeds, Australia) and the other on normal diet (ND,
Speciality Feeds, Australia) until six months of age.
The HF diet contained 40% of total digestible energy
derived from lipids, with 21% total fat, 4.7% crude
fibre, 1000 IU/kg vitamin D3 and 0.6% calcium,
whereas ND had 8.9% energy derived from lipids,
with 4.8% total fat, 4.8% crude fibre, 2000 IU/kg vita-
min D3 and 0.8% calcium.
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Figure 1. Comparison of mouse weights (A), food con-

sumption (B) and organ weights (C) in mice fed on high fat
diet (HF) vs normal diet (ND). (A) Young male BALB/c
mice on HF or ND diet were weighed weekly for 5 months,
prior to tumour implantation and sacrifice (HF n=31, ND
n=10). (B) Daily food consumption over two weeks was
analysed in groups of 5 mice each HF and ND. (C) Organs
and tumour were weighed (HF n=20, ND n=9). Data were
analysed using 2-way ANOVA followed by post-hoc Bon-
ferroni tests; ** p<0.01, *** p<0.001.

Tumour model

BALB/c mice at age 6 months were implanted subcu-
taneously (s.c.) in one flank with 1x10° CT26 tumour
cells (undifferentiated, syngeneic colon adenocarci-
noma from the American Type Culture Collection,
Cryosite Distribution, Australia). Tumour volume was
measured daily with callipers, and individual animals
were sacrificed when tumours reached a maximum
volume of 1000 mm® (V = /6 x width” x length). The
animals were sacrificed by isoflurane (Baxter, Deer-
field, IL, USA) overdose and cervical dislocation, and
the tumours excised, organs harvested and blood col-
lected. Organs and tumours were weighed, and divided
in half, with one half immediately flash frozen, and the
remainder fixed using formalin. Serum, organs and
tumours were stored frozen at -80°C.

Immunohistochemistry

Formalin-fixed tumours were prepared for paraffin
embedded (FFPE) blocks, sectioned at 3-5 um and
stained with Haematoxylin and Eosin (H&E) to show
tissue morphology. Staining of phosphohistone H3
(pHH3) was used to determine tumour cell prolifera-
tion rates (Gerring et al. 2015). Immunostaining was
carried out following standard protocols for heat acti-
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Figure 2. Tumour growth (A) and tumour cell proliferation (B, C) in mice fed western style, high fat diet (HF) or normal diet
(ND). (A) BALB/c mice fed on HF or ND were implanted s.c. with CT26 tumour cells, and tumour growth was recorded as
time taken to reach 200mm’ and time to reach 4x tumour volume (200-800mm®) (HF n=10, ND n=5). (B) Tumour sections were
stained for the proliferation marker pHH3 and positive cells were counted in 12 random views, expressed as percentage of total
tumour cells. (C) An example of pHH3 staining (brown) in tumour sections of mice fed HF or ND is shown; size bar indicated
50 um. Data were analysed using 2-way ANOVA, ns = not significant.

vated antigen retrieval in citrate buffer to detect pHH3
(1:5000, Abcam, Melbourne, Australia) and using the
Anti-mouse HRP-DAB Cell and Tissue staining kit
(R&D Systems, Pharmaco, Auckland, NZ). Scoring of
pHH3 was carried out on viable tumour tissue by
counting positive cells in 12 random views at high
magnification (x40 objective) for each section, relative
to total number of cells per view.

Adipokine array

Serum and tumour lysates were used to identify
changes in the adipokine profiles. Frozen tumour tis-
sues were homogenised to a fine powder in liquid ni-
trogen using a chilled mortar and pestle. The tissue wet
weight was measured and phosphate buffered saline
with protease inhibitors (Sigma Aldrich, Auckland,
New Zealand) was added to make a homogeneous sus-
pension. Serum or lysates were pooled from n=4 mice
per group (ND and 3 HF groups: HFF, HFM, HFY),
and a ProteomeProfiler Mouse Adipokine Array (R&D

Systems, Pharmaco, Auckland, NZ) was used to deter-
mine relative levels of selected adipokines according
to manufacturer’s instruction. The array allows the
simultaneous detection of 38 different obesity-related
molecules. Briefly, 40 pg of protein (tumour lysate) or
100 pl serum (1/100 dilution) were mixed with a cock-
tail of biotinylated antibodies, and identified with
Streptavidin-HRP and chemi-luminescent detection.
Relative protein levels were determined using pixel
density (using Alliance 2.7 and UVI Band V12.14
software, Uvitec, Cambridge, UK) standardised to ref-
erence spots on the array.

Enzyme linked immune-sorbent assay (ELISA)
Insulin-like growth factor binding protein 5 (IGFBP-5)
in serum and tumour lysates was quantified using an
IGFBP-5 mouse ELISA kit (Abcam, Sapphire Biosci-
ence, Redfern, Australia) according to manufacturer’s
instructions. Tumour lysate was used at 40 pug/100 ml
and serum was diluted 1/100.
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Statistical analysis

Statistics and graphical analysis were done using
GraphPad Prism version 5.08. HF vs ND were com-
pared using one and two way ANOVA, with post-hoc
Bonferroni or post-hoc Tukey tests, as appropriate,
with significance assumed as p<0.05.

Results

Male BALB/c mice are resistant to diet-induced
obesity

After six months feeding on Western style, high fat
(HF) diet, male BALB/c mice weighed significantly
more (range 27 — 39¢g, p=0.003) than mice on standard
normal diet (ND, range 27g — 34g), but this difference
accounted for only about 10% of their weight (mean
33g vs 30g on day 158 for HF vs ND, respectively)
(Figure 1A). This small difference can partly be ac-
counted for by the observation that the mice preferred
normal mouse chow to HF, as mice on HF consumed
significantly less food (p<0.001, Figure 1B). Organ
weights were similar in the two feeding groups, with
the exception of omental fat, which weighed 2.7-times
more in HF mice compared to ND mice (p<0.001, Fig-

ure 1C). As expected, tumour weights did not differ as
they were removed when they reached a certain size
(1000 mm®), and not after a specified number of days
post implantation.

Tumour growth rates and cell proliferation do not
differ according to diet

Tumour growth rates, defined as lag phase (time from
implantation to reach 200 mm®) and log phase (time to
reach 4x volume, i.e. growth from 200-800 mm®) did
not differ between the two feeding groups (p>0.05,
Figure 2A). This was confirmed by staining for the
pHH3 proliferation marker (Figure 2B and C), which
showed no significant difference between tumours
grown in mice on HF vs ND (p>0.05).

Resistance to diet-induced obesity affects tumour
growth

Mice fed HF diet showed considerable variation in
their final body weight as well as omental fat weight,
and could be separated into three groups; those that
became obese on HF diet (HFF), those that remained
slim (HFS) and an intermediate group (HFM) (Figure
3A and B). When tumour growth was analysed accord-
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Figure 3. Subgroup analysis of mice more or less resistant to diet-induced obesity. BALB/c mice fed on HF diet were divided
into those that became obese (HFF, n=4), those that stayed slim (HFS, n=4) and those in-between (HFM, n=4), and compared to
mice on normal diet (ND, n=4). (A) Final mouse weight and (B) fat weights were significantly different in the subgroups. (C)
Tumour growth was recorded as time taken to reach 200mm® and time to reach 4x tumour volume (200-800mm®) (n=3-6). Data
were analysed using 2-way ANOVA followed by post-hoc Bonferroni tests; * p<0.05, ** p<0.01, *** p<0.001.
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Figure 4. Protein array analysis and IGFBP-5 ELISA data of mice fed on Western style, high fat diet (HF) compared to normal
diet (ND). BALB/c mice fed on HF diet were divided into those that became obese (HFF, n=4), those that stayed slim (HFS,
n=4) and those in-between (HFM, n=4), and compared to mice on normal diet (ND, n=4). (A) Serum and (B) tumour lysates
were analysed using an adipokine array, and IGFBP-5 concentrations were measured in (C) serum and (D) tumour lysates by
ELISA. Data were analysed using 2-way ANOVA, ns = not significant.

ing to the mice’s propensity to become obese, tumours
in the HFF group grew significantly faster (200-
800mm°) than those in the ND group (p<0.05), and
faster than the other two HF groups, although that was
not significant (p>0.05) (Figure 3C). Staining for
pHH3 showed that tumours in the HFS group had a
lower proliferation rate than the other groups, but this
did not reach significance (p>0.05, results not shown).

Resistance to diet-induced obesity affects adipokine
profile

A range of 38 adipokines in the serum and tumour lys-
ates of these groups of mice were analysed by proteo-
mic profiling (Figure 4A and B, Supplementary table
1). In serum, of the 21 detected adipokines, 9 increased
by more than 50% and none decreased by more than
50%, compared to serum from mice on ND (Figure
4A). A more than 2-fold increase was observed for
adiponectin (HFM and HFS), fetuin A (HFM), IGFBP-

1 (HFS), pentraxin 2 (HFM) and TIMP-1 (HFF), com-
pared to ND in serum. Within the three high fat diet
groups, all serum adipokines were increased in the two
non-obese groups, compared to the obese group (with
the exception of TIMP-1). In tumour lysates, of the 20
adipokines detected, 5 increased by more than 50%
and none decreased by more than 50%, compared to
lysates from mice on ND (Figure 4B). A more than 2-
fold increase was observed for CRP (HFF) and IGFBP
-5 (HFF) compared to ND in tumour.

IGFBP-5 was analysed further using ELISA
(Figure 4C and D), as it showed differential levels in
both serum and tumours. IGFBP-5 levels in serum
were increased in HFF mice, whereas in tumour lys-
ates the HFS group showed highest levels, compared
to the ND group, but none were statistically significant
(p>0.05, Figure 4C and D).
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Discussion

This study confirmed that BALB/c mice are resistant
to diet-induced obesity, but within this group of mice,
some animals remained slim while others became
obese. This inherent variance affected tumour growth
such that obese mice on high fat diet showed increased
tumour growth rates compared to mice on normal diet,
whereas non-obese mice on high fat diet showed no
difference in tumour growth rates. The implications of
these findings is that high fat diet alone does not drive
tumour growth, but rather inherent factors within the
host.

Mouse models have been widely used to in-
vestigate the effect of diet-induced obesity on cancer
risk and progression. Among several strains of labora-
tory mice, BALB/c mice were identified as one of the
most resistant ones to diet-induced obesity (Fearnside
et al. 2008, Montgomery et al. 2013, Nishikawa et al.
2012, Waller-Evans et al. 2013) although one study
reported higher fat gain and hepatic lipid accumulation
in BALB/c compared to others (Nishikawa et al.
2007). C57BL/6 mice are highly susceptible to diet-
induced obesity and hence the majority of studies have
been carried out in these animals. These C57BL/6
studies demonstrated that dietary factors contribute
substantially to the risk of colorectal (Dougherty et al.
2009, Newmark et al. 2001, Richter et al. 1995, Riso
et al. 1996) and other cancers (Xue et al. 1996). Yet
tumour growth in our study relied primarily on the pro-
pensity of mice to become obese and not their diet per
se.

This study did not show any effect of Western
style, high fat diet per se on tumour growth. This is in
contrast to two studies done by Park et al., who dem-
onstrated an increase in CT26 colorectal (Park et al.
2012) and 4T1 breast tumour (Kim et al. 2011) growth
and metastases in BALB/c mice fed high fat diet. In a
direct comparison between the study by Park et a/
(2012) and this study, the main differences were length
of feeding (16 weeks vs 20 weeks), the method of tu-
mour implantation (CT26 tumours were implanted in
Matrigel vs PBS), and composition of the diet (60
kcal% fat vs 40% energy derived from fat, identical
quantities of vitamins and minerals vs reduced vitamin
D and calcium). Low calcium and reduced vitamin D
were previously identified as important risk factors in
the Western style diet in addition to high fat content
(Erdelyi et al. 2009, Richter et al. 1995). Thus, these
alterations may explain the differences in outcome be-
tween the studies, but also emphasise that enhance-
ment of tumour growth by high fat diet may not be a
universal fact, and that host factors are likely to play
an important role.

In BALB/c mice, Western style diet has been
shown to induce DNA binding activity of nuclear fac-
tor k-B and increase serum concentrations of tumour
necrosis factor alpha (Kim et al. 2010), to change lev-
els of choline-containing phospholipids (Kim et al.
2014), and to deregulate genes involved in fatty acid
biosynthesis and uptake (Nishikawa et al. 2012), as
well as to deregulate signalling pathways of the protea-
some, PPAR signalling and ubiquitin-mediated prote-
olysis (Waller-Evans et al. 2013). Our data indicated
that several adipokines changed with diet, with the ma-
jority showing increased levels in obesity-resistant
mice compared to obese BALB/c mice. Exceptions
were increased Tissue Inhibitors of Metallo-
Proteinases (TIMP-1) levels in serum and increased C-
Reactive Protein (CRP) levels in tumour lysates of
HFF mice. TIMPs play a vital role in the development
of obesity by supporting adipogenesis and extracellular
matrix degradation (Crandall et al. 1997). In vivo stud-
ies have shown that elevated circulating levels of
TIMP-1 derived from the primary tumour prepare the
metastatic niche by upregulating factors in the liver
that induce homing of tumour cells and promote for-
mation of diffuse micrometastases in the liver tissue
(Kopitz et al. 2007, Schelter et al. 2011). Our study
observed no macroscopic metastases in the liver, but
could not rule out single cell tumour dispersions. CRP
is an acute-phase protein involved in inflammation and
is associated with obesity (Nanri et al. 2007). Both
TIMP-1 and CRP are likely to be of importance in tu-
mour growth in obesity-resistant mice but further work
is required to confirm our observations. The effect of
diet and obesity on the IGF-1 axis in this study, spe-
cifically IGFBP-5, were subtle and similarly require
further work. It is interesting that, although adi-
ponectin was reduced in the HFF group of mice com-
pared to HFS/M mice, as expected (Lamas et al.
2015), HFF mice had levels similar to the ND group.

In conclusion, tumour growth was enhanced in
animals unable to resist obesity and this affected serum
and tumour adipokine profiles. The implications of our
data are that diet per se may not be the main driving
factor in diet-induced obesity, but rather the host re-
sponse to this challenge.
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