
Pteridine reductase 1 (PTR1) from Leishmania dono-

vani is a short chain reductase that catalyses the 

NADPH-dependent reduction of folates and pterins. It 

has gained attention as a therapeutic target because it 

acts as a metabolic bypass for dihydrofolate reductase 

(DHFR) targeting drugs and is thought to be responsi-

ble for the failure of conventional therapies against the 

trypanosomatids. In the present study, we report the 

identification of thianthrene as a potent inhibitor of L. 

donovani PTR1 (LdPTR1) based on both structure-

based virtual screening and experimental verification. 

Thianthrene displayed uncompetitive mixed type inhi-

bition in a recombinant enzyme inhibition assay. In 

addition, cell based assays and flow cytometry showed 

that the intracellular amastigotes were inhibited by thi-

anthrene in vitro. The results of our study could be 

considered for the development of novel therapeutics 

based on PTR1 inhibition. 
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Thianthrene is a novel inhibitor of Leishmania donovani pteridine 

reductase 1 (PTR1) 

Introduction 
 

Leishmaniasis is caused by protozoan parasites of the 

Leishmania genus. The disease can lead to severely 

disfiguring mucocutaneous manifestations and cause 

lethal visceral infection. Visceral leishmaniasis (VL) 

or kala-azar is a vector-borne tropical disease that in-

fects half a million people every year. The disease is 

strongly linked to poverty and 90% of the cases are 

found in the poorest areas of Bangladesh, Brazil, 

Ethiopia, India, Nepal and Sudan (WHO 2012). In In-

dia, the state of Bihar alone contains ~50% of the 

world's cases of VL. No effective vaccines are avail-

able against Leishmania infection (Carter et al. 2007, 

Handman 2001) and chemotherapy remains the only 

treatment option for controlling infection. 

 The identification of novel drug targets can 

help develop new therapeutic strategies against VL. 

The parasites exhibit many atypical features in the 

pteridine metabolic pathway which are essential for 

growth; these could prove to be excellent targets for 

chemotherapeutic treatment. Leishmania and other 

trypanosomatid protozoans are auxotrophs for reduced 

pteridines (pterins and folates) which are required for 

critical cellular pathways like nucleic acid and protein 

biosynthesis. Thus, they rely on the uptake of pterin 

compounds, such as biopterin or folate, from the host. 

These then undergo two successive reductions to gen-

erate the active tetrahydro-species. Two enzymes carry 

out these reactions in the protozoans, namely bifunc-

tional dihydrofolate reductase-thymidylate synthase 

(DHFR-TS) and pteridine reductase (PTR1). The for-

mer is the major enzyme known to reduce folate and 

7,8-dihydrofolate (DHF) to 5,6,7,8-tetrahydrofolate 

(THF) (Nare et al. 1997a). PTR1 is responsible for the 

NADPH-dependent reversible reduction of oxidized 

pterins to dihydrobiopterin (DHB) as well as of tetra-

hydrobiopterin (THB) and folates to DHF and THF 

(Nare et al. 1997b) (Figure 1). 

 The PTR1 enzyme was discovered in Leishma-

nia several years ago (Gourley et al. 1999). Studies 

indicate that the primary role of PTR1 is to salvage 

oxidized pterins and its secondary role is to reduce 

folates (Bello et al. 1994, Nare et al. 1997b, Wang et 

al. 1997). It is the only enzyme that has been reported 

to reduce biopterin in Leishmania parasites and has 
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been shown to be essential for growth in vivo (Bello et 

al. 1994, Nare et al. 1997b, Sienkiewicz et al. 2010). 

Interestingly, PTR1 is much less susceptible to inhibi-

tion by clinical DHFR inhibitors like methotrexate 

(IC50 of 1.1μM, 0.005μM and 0.04μM for L. major 

PTR1 (LmPTR1), LmDHFR-TS and human DHFR 

(hDHFR), respectively) while it catalyzes the same 

reaction as that of DHFR. It is therefore likely to be 

responsible for the failure of antifolate therapeutic 

strategies targeted against DHFR by acting as a meta-

bolic bypass (Hardy et al. 1997, Nare et al. 1997a). In 

this regard, PTR1 presents an attractive drug target for 

the development of novel therapeutic tools. 

 High throughput virtual screening has been 

applied extensively in modern drug discovery (Tulloch 

et al. 2010). Potent DHFR inhibitors are already 

known, and we have worked towards designing novel 

PTR1 inhibitors based on the enzyme identified from 

the clinical isolate of L. donovani PTR1 (LdPTR1). 

Using structural analysis combined with biochemical 

verification, we propose a structure-function model of 

this important enzyme. The results of our study could 

lay the foundation for the design of novel vaccination 

and anti-PTR1 drug-like agents.  

Materials and Methods 
 

Macrophage culture  
The J774A.1 mouse (BALB/c) macrophage cell line 

was obtained from the National Centre for Cell Sci-

ence (NCCS Pune, India) and used as a cellular host 

for the in vitro intracellular test of antileishmanial ac-

tivity against amastigotes. Cells were maintained at 

37oC, 5% CO2, 95% air. They were cultured in RPMI 

1640 medium (Gibco-BRL) containing 2 g/L sodium 

bicarbonate, 6 g/L HEPES, 10% (v/v) heat inactivated 

fetal bovine serum (HIFBS; Gibco, Germany), 100 U 

penicillin and 100 μg/mL streptomycin. 

 

Routine L. donovani parasite culture and counting 
Green fluorescent protein (GFP) transfected L. dono-

vani were prepared as described previously (Singh & 

Dube 2004) and cultured in Medium 199 (pH 7.2) 

(Sigma), supplemented with Hank’s salts, 2.05 mM L-

glutamine, 12 mM HEPES buffer (Sigma), 10% (v/v) 

HIFBS, 100 units/mL penicillin, 100 μg/mL strepto-

mycin and 150 μg/mL geneticin sulfate (G418). They 

were grown in vented T25 tissue culture flasks and 

maintained at 25°C. Promastigote cultures were initi-

ated at 106 parasites per ml and subcultured every 3-4 

days. Parasite counts were performed in duplicate us-

ing a hemocytometer and a particle counter (Beckman 

Coulter, Fullerton, CA). 

 

In silico docking studies 
For the identification of inhibitors against LdPTR1, de 

novo design of ligands was performed in a virtual 

screening strategy. The CAP Database (Chemicals 

Available for Purchase) by Accelrys Inc., consisting of 

approximately 75,000 compounds, was used as the 

ligand source in the virtual screening experiments. 

 A recent report on the structure of recombinant 

LdPTR1 revealed a disordered active site (Barrack et 

al. 2010). In this regard, a homology model of 

LdPTR1 was built using the resolved crystal structure 

of LmPTR1 (PDB code: 1E92) as a template (Gourley 

et al. 1999), using the homology modelling tool Mod-

eller 8v1 (Martí-Renom et al. 2000). More specifi-

cally, comparative homology modelling started with 

the searching of the query protein sequence against the 

Protein Data Bank using BLAST (Basic Local Align-

ment Search Tool). The highest scoring sequence was 

identified as LmPTR1 and chosen as a template to 

build the homology model of LdPTR1. The L. major 

and L. donovani enzymes share 91% sequence identity 

(Kumar et al., 2004) and the catalytic residues Asp181, 

Tyr191, Tyr194, Lys198 are conserved; therefore, the 

details of the catalytic mechanism are expected to be 

identical between them. The active site residues are 

shown in Figure 2 and the sequence alignment be-

tween the two species is shown in Figure 3. The model 

was further optimized by adding all hydrogens and 

subjected to 100 steps of minimization with Tripos 

Forcefield of the SYBYL 7.1 Molecular Modeling 

Suite (Tripos Inc., St. Louis, MO). Its structural quality 

was then verified using tools available at the Procheck 

and the Verify3D server (Laskowski et al. 1996). 

Ramachandran plot calculations showed that 95.3% of 

the residues are in favored and 4.7% exist in allowed 

regions (Figure 4). Analysis using the Verify3D pro-
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Figure 1. Folate and pterin transport and processing. Folate 

and pterin enter the cell by the folate (FT) and biopterin 

(BT1) transporters, respectively. Folate is then reduced to 

7,8-dihydrofolate (DHF) and 5,6,7,8-tetrahydrofolate (THF) 

by dihydrofolate reductase (DHFR) and pteridine reductase 

(PTR1). Similarly, biopterin is reduced to dihydrobiopterin 

(DHB) and tetrahydrobiopterin (THB) by PTR1. 



gram showed 82.81% of the residues having an aver-

age 3D-1D score > 0.2 (Lüthy et al. 1992). These 

analyses indicate that the model has a good quality. 

The binding site was further modelled with the cofac-

tor NADP+ from the crystal structure of LmPTR1 (Pdb: 

1E92) (Accelrys 11, San Diego, CA). 

 Ludi, a de novo structure based drug design 

tool (Bohm 1992) employing the InsightII interface 

was then used to perform the virtual screening experi-

ments. This software uses a systemic search algorithm 

with either a linking or growing strategy for ligand 

conformational structure generation. In this study, 

Ludi parameters were assigned using standard default 

values and ligand library as specified in Ludi/CAP. 

The default parameters include Linkages (set as none), 

Max RMSd (set between 0.3-0.5) and Rotatable bonds 

(set to One_At_A_Time). In addition, the Min Separa-

tion parameter was kept between 3.0 and 3.5, the Dens 

L and Dens P parameters were set to 25, the Min Surf 

parameter was set to 50 and The Max Unfilled Cavity 

parameter was set to 0. The Centre of Search was de-

fined by choosing the PTR1 active site residue A194: 

OH with a search sphere radius of 7 Å. The virtual 

screening was performed using the targeted search 

mode. This allows the software to specify the receptor 

atoms that fragments are required to interact with. Re-

sults obtained were analyzed and prioritized based on 

the Energy_estimate_3 scoring function. This function 

was chosen in order to evaluate the change in free en-

ergy upon binding contributions made by the polar as 

well as the hydrophobic and aromatic-aromatic interac-

tions. 

 

Enzyme expression, purification and activity assays  
To establish the targeted enzymatic reaction system, 

the recombinant enzyme LdPTR1 was expressed in E. 

coli and purified based on its N-terminal His6 tag by 

affinity chromatography using a Ni2+-IDA Hi-Trap 

chelating sepharose column in AKTAprime plus (GE 

Healthcare, CA) (Kumar et al. 2004). Reductase activ-

ity (LdPTR1) was assayed as described previously 

(Kaur et al. 2010). Km and Vmax values for biopterin 

were determined using a Lineweaver-Burk plot. 

 

Flow cytometry based growth inhibition assay 
The J774A.1 mouse (BALB/c) macrophage cell line 

was used for the in vitro intracellular drug efficacy 

test. The assay was performed as described in the pro-

tocol (Kaur et al. 2010). 

 

Statistical analysis  
The data are presented as mean±SD. The statistical 

analysis was performed by one-way ANOVA using the 

GraphPad Prism software (GraphPad Software Inc., La 

Jolla, CA). 

 

Results and Discussion 
 

Molecular modelling and docking of thianthrene  
Enzymes of folate metabolism are proven targets for 

Journal of Molecular Biochemistry, 2012   70 

Figure 2. Superposition of modeled LdPTR1 (cyan) onto the LmPTR1 template (red). (A) The active site of PTR1 is shown 

together with the bound cofactor NAD and the conserved active site residues are labelled. (B) The inhibitor thianthrene is 

shown docked into the binding site of the LdPTR1. The contacting active site residues are labelled along with the bound cofac-

tor NAD. The sulphur atom of thianthrene is involved in Sulphur……π interactions with F113 and nicotinamide. 



the treatment of several bacterial and parasitic infec-

tions (Webster 1990) and antifolate-based drugs, such 

as methotrexate, are widely used in such cases. How-

ever, in the case of trypanosomatids, resistance is me-

diated principally by amplification of a trypanosomatid 

specific PTR1 (Nare et al. 1997a). PTR1 catalyses the 

same reaction as DHFR but is less susceptible to 

known antifolates, providing a metabolic bypass to 

alleviate DHFR inhibition. Inhibition of PTR1 would 

facilitate the exploitation of DHFR-specific antifolates 

and provide an efficient therapeutic approach. 

 In drug discovery, the 3D conformational ar-

rangement of the active site determines the likelihood 

of finding a molecule with the right properties. We 

have applied computational methods (virtual screen-

ing, modelling and chemical similarity searches) for 

ligand identification. The co-crystal structure of 

LmPTR1 is available with the bound substrate DHB: 

PTR1−NADP+−DHB (Pdb: 1E92), the bound meth-

otrexate: PTR1−NADPH−MTX (Pdb: 1E7W) and the 

bound inhibitor 2,4,6-triaminoquinazoline (TAQ): 

PTR1-NADP-TAQ (Pdb: 1W0C). As a large part of 

the pterin binding site interacts with nicotinamide, the 

substrate or inhibitor can only bind effectively after 

formation of the protein-cofactor complex. In this re-

gard, the PTR1 binding site was modelled with the 

cofactor NADP+, in order to obtain a more realistic 

virtual screening model. The inhibitors against PTR1 

were identified using Ludi. The control docking calcu-

lations were performed using DHB as the known sub-

strate. The resultant scores for binding affinities calcu-

lated by Ludi are shown in Table 1. 

 The screening returned thianthrene and meth-

otrexate as the top best hits currently available in 

chemical stock databases. The flat aromatic ring of 

methotrexate is sandwiched between the nicotinamide 

and Phe113 aromatic rings whilst methotrexate is mak-

ing hydrogen bonded interactions with Ser111 and 
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LmPTR1  GSHMTAPTVPVALVTGAAKRLGRSIAEGLHAEGYAVCLHYHRSAAEANALSATLNARRPN 60 

LdPTR1  ---MTAPTVPVALVTGAAKRLGSGIAEGLHAEGYAVCLHYHRSAAEANTLAATLNARRPN 57 

           ******************* .************************:*:********* 

 

LmPTR1  SAITVQADLSNVATAPVSGADGSAPVTLFTRCAELVAACYTHWGRCDVLVNNASSFYPTP 120 

LdPTR1  SAIPVQADLSNVAKAPAGGADGAAPVTLFKRCADLVAACYTHWGRCDVLVNNASSFYPTP 117 

        ***.*********.**..****:******.***:************************** 

 

LmPTR1  LLRNDEDGHEPCVGDREAMETATADLFGSNAIAPYFLIKAFAHRVAGTPAKHRGTNYSII 180 

LdPTR1  LLRKDEDGHVPCVGDREAMEAAAADLFGSNAMAPYFLIKAFAHRVADTPAEQRGTNYSIV 177 

        ***:***** **********:*:********:**************.***::*******: 

 

LmPTR1  NMVDAMTNQPLLGYTIYTMAKGALEGLTRSAALELAPLQIRVNGVGPGLSVLVDDMPPAV 240 

LdPTR1  NMVDAMTSQPLLGYTIYTMAKGALEGLTRSAALELAPLQIRVNGVGPGLSVLADDMPPAV 237 

        *******.********************************************.******* 

 

LmPTR1  WEGHRSKVPLYQRDSSAAEVSDVVIFLCSSKAKYITGTCVKVDGGYSLTRA 291 

LdPTR1  REDYRSKVPLYQRDSSAAEVSDVVIFLCSSKAKYVTGTCVKVDGGYSLTRA 288 

         *.:******************************:**************** 

Figure 3. Sequence alignment of the modeled LdPTR1 onto the LmPTR1 template. The * indicates the fully conserved 

residues while : and .  indicate conservation between groups of strongly and weakly similar properties, respectively. 

Figure 4. Ramachandran Plot showing the different regions 

of the modeled LdPTR1. The plot was generated using 

Procheck. 



Tyr194. The docking conformation for thianthrene as 

predicted by Ludi is shown in Figure 2. The inhibitor 

mimics the pterin head group of the prototypic anti-

folate drug methotrexate in the spatial disposition and 

exploits similar sandwiched hydrophobic stacking to 

bind to the PTR1 active site (McLuskey et al. 2004). 

Thianthrene is stacked between Phe113 and the nicoti-

namide ring of the cofactor by using parallel-displaced 

and face-to-face aromatic-aromatic interactions within 

the active site of PTR1 (Figure 2) (Gallivan & Dough-

erty 2000). Such stacking interactions between sub-

strate and nicotinamide are exclusive to PTR1 amongst  

all SDR family members (Gourley et al. 2001). The 

terminal oxygen for Y194 is also making an aryl O-H 

type of stacking interactions with the aromatic ring of 

thianthrene (Perutz et al. 1986). 

 More than 20 complexes are available in the 

protein data bank that fit the criteria for pteridine re-

ductase inhibition. Hydrophobic stacking interactions 

between the nicotinamide and Phe113 is an important 

aspect for substrate recognition and catalysis in the 

pteridine reductase catalytic mechanism. The docking 

studies show that the inhibitor thianthrene is able to 

bind at the same catalytic center. Like thianthrene, the 

PTR1 natural substrates are pterin and folates which 

also contain a flat ring system. Perhaps the addition of 

a polar side-chain to the basic aromatic backbone of 

thianthrene could further enhance the specificity to-

wards the enzyme. 

Kinetics of L. donovani PTR1  
Recombinant enzyme inhibition was performed to con-

firm the target specificity of thianthrene to LdPTR1. 

The enzyme concentration was optimized at 0.34μM 

and the pH at 4.8 for LdPTR1 activity (Kaur et al. 

2010). PTR1 has a greater affinity for biopterin than 

dihydrobiopterin. Km and Vmax values were derived 

using the Lineweaver-Burk plot and were found to be 

5.85±1.02μM and 0.13±0.05μmol/min/mg in the case 

of biopterin and 19.4±1.7μM and 2.8±0.5μmol/min/mg 

in the case of dihydrobiopterin, respectively (Singh et 

al. 2010). The properties of the recombinant LdPTR1 

were similar to native LmPTR1 (Nare et al. 1997b). 

The latter has a 91% sequence identity to LdPTR1 

while the active and NADPH binding sites are highly 

conserved in these two distantly related species 

(Kumar et al. 2004). Using methotrexate, a known an-

tifolate inhibitor of Plasmodium falciparum DHFR 

(PfDHFR) (Shallom et al. 1999), the Ki value was 

found to be 1.2μM for LdPTR1 against the biopterin 

substrate (Figure 5). The Ki for methotrexate inhibition 

against the biopterin substrate reactions performed by 

LdPTR1 did not significantly alter at pH 4.8 (Figure 

5).  

 Overexpression of PTR1 could also contribute 

to relieving the inhibition of DHFR-TS, by increasing 
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No Ligand  CAP ID Structure 
Ludi 

Score 

1 
154861 

2-Iodo-9H-fluorene 

 

I

751 

2 
161750 

9H-Fluoren-3-ol 

 

OH

767 

3 
10177 

Thianthrene 

 S

S
  

686 

  

4 

250024 

2,3,5-Trimethyl-1H-

indole 

 

H
N

600 

5 

19302 

4-Pyrrolidin-1-yl-

phenylamine 

 

N

NH2

659 

6 

DHB 

2-Amino-6-(1,2-

dihydroxy-propyl)-7,8-

dihydro-3H-pteridin-4-

one  

N

H
N

NH

N

O

HO

NH2

H3C OH

684 

Table 1. Predicted Ludi Scores for the selected compounds 

with PTR1 along with the compound structures. DHB refers 

to the Control Docking with 7, 8 Dihydrobiopterin. 

Figure 5. Lineweaver–Burk plot for methotrexate and thian-

threne inhibition of LdPTR1. Circle: uninhibited enzyme; 

square: assay in the presence of methotrexate; triangle: as-

say in the presence of thianthrene. 



 

Figure 6. Representative histograms and dot plots of (A) Macrophages, (B) Macrophages infected with promastigotes express-

ing GFP (C-G) Infected macrophages with 2, 3, 4, 5 and 6 μg/mL of thianthrene, in that order. 

73   Journal of Molecular Biochemistry, 2012 



the H2folate pools indirectly through increased utiliza-

tion of biopterin or directly by reduction of folate. In 

this manner, PTR1 provides a metabolic by-pass of 

DHFR-TS inhibition. The Ki value for LdPTR1 was 

found to be 3 times less than LmPTR1 (Cavazzuti et al. 

2008). LdPTR1 with the biopterin substrate exhibits 

uncompetitive mixed type of inhibition, indicating that 

thianthrene binds specifically to the PTR1 cofactor 

rather than the naked enzyme. Inhibition studies of 

LdPTR1 with thianthrene showed a Ki value of 1.0μM 

(Figure 5). Despite being a far smaller molecule, thian-

threne displays a similar inhibition constant to that of 

methotrexate. 

 

In vitro efficacy of thianthrene against the L. dono-

vani intracellular amastigotes 
As the macrophage-amastigote model is considered as 

the gold standard (Singh & Dube 2004) for establish-

ing the drug sensitivity profile of an antileishmanial 

compound, promastigotes expressing GFP were used 

to infect J774A.1 macrophage cells. Our Leishmania 

promastigote transfectants proliferated and were infec-

tive to macrophages resulting in fluorescent amas-

tigotes, this way maintaining the characteristics of the 

parental wild-type. The infection rate of macrophages 

was measured by using the MFI of the FL1 histogram 

for the uninfected and infected cultures. As there is no 

fluorescence calibration data available for the macro-

phage population, the MFI was found to be equal to 

6.30, according to the histogram shown in Figure 6. 

The maximum cell population (99.32%) is shown in 

the lower left (LL) quadrant of Figure 6. Furthermore, 

MFI was found to be 37.73 in the histogram of macro-

phages infected with GFP-expressing promastigotes. 

Cells (57.68%) from the LL quadrant were shifted to 

lower right (LR) quadrant. In addition, the MFI de-

creased from 25.38 to 21.74 to 21.17 to 18.90 and 

18.64 at 2, 3, 4, 5 & 6μg/mL of thianthrene, respec-

tively. In line with this, the number of cells from the 

LR quadrant decreased from 41.68% to 33.77% to 

32.26% to 26.92% and 27.01% at 2, 3, 4, 5 & 6μg/mL 

of thianthrene, respectively (Figure 6).  

 Flow cytometry results indicated that the intra-

cellular amastigotes of L. donovani were inhibited by 

thianthrene. The IC50 of thianthrene was found to be 

23μM. The thianthrene was also checked against the 

J774A.1 cell line to determine whether the doses used 

for IC50 on intramacrophage amastigotes were toxic to 

the cells themselves. The experimental results indi-

cated that the CC50 value was 2-3 times higher (87μM) 

than the IC50 dose (23μM) for intracellular amas-

tigotes. 

 In conclusion, the antileishmanial activity of 

thianthrene was identified by structural modeling stud-

ies as well as cell and enzyme inhibition assays. Cur-

rently, microarray analysis on intracellular Leishmania 

treated with thianthrene is carried out in an effort to 

identify the genes that are differentially expressed in 

intracellular thianthrene-treated Leishmania cells. 
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