Review

Biochemical and cytogenetic changes in postovulatory and in vitro aged mammalian oocytes: a predisposition to aneuploidy

John B. Mailhes

Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA 71130

Received on June 30, 2015; Accepted on October 15, 2015; Published on November 25, 2015

Correspondence should be addressed to John B. Mailhes; Tel: 318 675 5382, Fax: 318 675 4671, E-mail: jmailh@lsuhsc.edu

Abstract

Aneuploidy represents the most prevalent genetic disorder of man. Its association with spontaneous abortions, mental and physical retardation, and numerous malignant cells is well-known. Unfortunately, little is known about the causes and even less about the underlying molecular mechanisms of aneuploidy, especially in mammalian germ cells. Although several etiologies have been proposed for describing human aneuploidy, the only consistent finding remains its positive correlation with maternal age. At the outset, it is essential to point out that there exist numerous potential causes and mechanisms for the etiology of aneuploidy. Nevertheless, information about the molecular mechanisms of chromosome segregation in various species is providing a foundation for research designed to investigate the causes and mechanisms of aneuploidy. The

intent of this review is to propose that the biochemical reactions and cellular organelles responsible for accurate chromosome segregation become compromised during postovulatory and in vitro oocyte aging; thus, increasing the probability of faulty chromosome segregation. Recent data have shown that the efficacies of the spindle assembly checkpoint and the chromosome cohesion proteins diminish as oocytes age postovulation and during in vitro culture. Such changes represent potential models for studying aneuploidy. Prior to describing the biochemical and cellular organelle changes found in aged oocytes and their effect on chromosome segregation, an overview of the molecular details surrounding chromosome segregation is presented.

Introduction

This review is based on the premise that postovulatory and in vitro oocyte aging are accompanied by a progressive and functional deterioration of the biochemical pathways and cellular organelles responsible for chromosome segregation. This review does not delve into the extensive literature dealing with the relationship between maternal age and aneuploidy.

The identification, chronology, and interaction of the biochemical events associated with chromosome segregation are undergoing extensive investigation - mainly in models other than mammalian oocytes. Such data provide a foundation for designing experiments to study aneuploidy in mammalian germ cells. To preserve genomic integrity, the interactions between unique biochemical pathways and cellular organelles must be choreographed precisely during mitosis and meiosis. Disarray among these events can result in aneuploidy. At the least, accurate chromosome segre-

gation requires the temporally-coordinated interaction among: protein kinases and phosphatases, topoisomerases, DNA decantination, chiasmata resolution, chromatin condensation, microtubule kinetics, centrosomes, kinetochore-microtubule attachment and tension, kinetochores and their associated proteins, motor and passenger proteins, chromosome biorientation, spindle checkpoint proteins, anaphase promoting complex, proteasomes, securin, cohesin, and separin proteins. Furthermore, the complexity of studying aneuploidy is illustrated by the approximate 5,000 yeast genes that have been directly or indirectly associated with chromosome segregation. Many of these genes are also found in humans, and it appears that the basic mechanisms of chromosome segregation are similar between budding yeast (Saccharomyces cervisiae), fission yeast (Schizosaccharomyces pombe), and other eukaryotes (Yanagida 2005).

Numerous reports have described biochemical and cellular organelle changes in aged oocytes. How-

ever, relatively few studies were designed to concomitantly study such changes and aneuploidy under the same experimental design. Those that have done so, found a positive correlation between biochemical and cellular organelle alterations and aneuploidy (Emery et al. 2005, Mailhes et al. 1998, Plachot et al. 1988, Rodman 1971, Sakurada et al. 1996, Yamamoto & Ingalls 1972). It is suggested that experimental manipulation of the reported changes in aged oocytes can be used as models for investigating some of the numerous potential mechanisms of aneuploidy. Recent data from mammalian oocytes showed that degradation of spindle-assembly checkpoint (SAC) proteins (Homer et al. 2005a, Steuerwald et al. 2005) and chromosome cohesion proteins (Hodges et al. 2001, 2005, Prieto et al. 2004) increased the probability of premature centromere separation (PCS) and aneuploidy. The reader is referred to other reviews involving aneuploidy in male germ cells (Adler et al. 2002, Handel et al. 1999) and neoplastic cells (Bharadwaj & Yu 2004, Rajagopalan & Lengauer 2004, Yuen et al. 2005).

Overview of Mammalian Oocyte Aneuploidy Research

Although aneuploidy represents the greatest genetic affliction of man, little is known about its causes and even less about its underlying molecular mechanisms, especially in mammalian germ cells. Human aneuploidy is linked with embryonic loss, mental and physical anomalies in newborns, and cancer. Approximately 10-30% of human zygotes (Ford 1981, Hansmann 1983, Hassold & Hunt 2001), 50% of spontaneous abortuses (Bond & Chandley 1983, Hook 1985a), and 0.31% (204/64887) of human newborns (Hecht & Hecht 1987) have an abnormal chromosome number. Furthermore, data based on cytogenetic analyses of human oocytes and preimplantation embryos indicate that over 50% are an euploid (Kuliev et al. 2003, Magli et al. 2001, Munne 2002). When considering preimplantation genetic diagnosis for aneuploidy, it seems relevant to note that within embryonic variation was reported among blastomeres when FISH technology was employed (Coulam et al. 2007).

For decades, numerous hypotheses have been proposed for the etiology of human germ cell aneuploidy. However, the only constant finding remains its positive correlation with maternal age (Bond & Chandley 1983, Chandley 1987, Hook 1985b). Even for this relationship, definitive data about the underlying mechanisms are lacking (Pellestor et al. 2005, Warburton 2005). Besides maternal age, other findings also appear relevant for understanding the genesis of germ cell aneuploidy. Earlier reports showed that the

incidence of aneuploidy for specific chromosomes occurred more frequently during female meiosis I than either meiosis II or male meiosis (Bond & Chandley 1983, Hassold & Sherman 1993, Hook 1985b). However, this finding has recently been questioned (Rosenbusch 2004). Also pertinent are the reports showing that certain human chromosomes are more susceptible to missegregation than others (Hassold 1985, Hassold & Hunt 2001, Hassold et al. 1984, Lamson & Hook 1980, Nicolaidis & Petersen 1998). Such variability among chromosomes requires prudence when only specific chromosomes (instead of the entire complement) are used to estimate the incidence of aneuploidy.

Another significant factor for consideration is the sexual dimorphism that exists for both spontaneous and induced germ cell aneuploidy (Eichenlaub-Ritter et al. 1996, Pacchierotti et al. 2007). Currently, data are unavailable from a study that was specifically designed to evaluate gender differences for mammalian germ cell aneuploidy. Other distinctive features of meiosis include the influence of neighboring somatic cells on germ cell differentiation and entry into meiosis (Geijsen et al. 2004, Toyooka et al. 2003) and the intrinsic sexual dimorphism between oogenesis and spermatogenesis (Handel & Sun 2005, Hodges et al. 2001). Thus, the fundamental distinctions between oogenesis and spermatogenesis, the differential susceptibility among chromosomes, the differences between mitosis and meiosis, and the numerous potential mechanisms demonstrate the complexity of studying aneuploidy.

Although it is not surprising that a unique precept explaining the etiology of aneuploidy has been adopted, it is now generally accepted that both nondisjunction and PCS represent primary events that lead to human aneuploidy (Anahory et al. 2003, Angell 1991, Angell et al. 1994, Pellestor et al. 2006, Wolstenholme & Angell 2000). Moreover, it appears that aneuploidy more often results from PCS of sister chromatids than from nondisjunction of whole chromosomes (Plachot 2003, Rosenbusch 2004). Additionally, variation has been shown to exist among specific chromosomes for the probabilities of both PCS and nondisjunction (Eichenlaub-Ritter 2003, Pellestor et al. 2003, Sun et al. 2000).

Early germ cell studies concentrated on the ability of various chemicals (mainly those that damaged microtubules) to induce an euploidy (Adler 1990, 1993, Allen et al. 1986, Eichenlaub-Ritter 1996, Mailhes 1995, Mailhes et al. 1986, Miller & Adler 1992). Other investigations involved assay development and validation (Pacchierotti 1988, Mailhes & Marchetti, 1994, Eastmond et al. 1995, Parry et al. 1995) and

gender differences (Eichenlaub-Ritter 1996, Eichenlaub-Ritter et al. 1996, Pacchierotti et al. 2007, Wyrobek et al. 1996). Based on the results from some of these studies, a broad-working hypothesis emerged. Several investigators proposed that endogenous-and exogenous-induced perturbations during the temporal sequence of oocyte maturation (OM) predispose oocytes to aneuploidy (Eichenlaub-Ritter 1993, Hansmann & Pabst, 1992, Mailhes & Marchetti 1994a). This proposal suggested that an induced temporal disarray (usually detected as a transient delay during metaphase I) among the cellular organelles and biochemical reactions controlling OM increased the probability of aneuploidy.

Although considerable data have shown that a chemically-induced delay during OM is often associated with chromosome missegregation, exceptions can be found. Phorbol 12,13-dibutyrate (Eichenlaub-Ritter 1993), colchicine (Mailhes & Yuan 1987), vinblastine sulfate (Mailhes & Marchetti 1994a, Russo & Pacchierotti 1988), griseofulvin (Marchetti & Mailhes 1995, Mailhes et al. 1993, Tiveron et al. 1992) induced both meiotic delay and aneuploidy. Conversely, isobutyl-1-methylxanthine and forskolin caused meiotic delay, but not aneuploidy (Eichenlaub-Ritter 1993), while etoposide treatment resulted in aneuploidy without meiotic delay (Mailhes et al. 1994, Tateno & Kamiguchi 2001). Consistency among the results from different studies regarding chemically-induced meiotic delay and oocyte aneuploidy cannot necessarily be expected due to: different experimental protocols, exposure of cells to compounds with diverse and often multiple modes of action, and the numerous potential mechanisms of aneuploidy (Mailhes 1995, Pacchierotti & Ranaldi 2006).

More recent studies have combined immunocytochemical techniques with cytogenetic analyses to affirm a positive correlation between oocyte meiotic spindle abnormalities and aneuploidy (Eichenlaub Ritter et al. 1996, Mailhes et al. 1999). Additional studies employing small molecule, cell-permeable inhibitors of specific biochemical reactions during cell division showed that the proteasome and calpain inhibitor MG-132 (Mailhes et al. 2002), the protein phosphatase 1 and 2A inhibitor okadaic acid (Mailhes et al. 2003a), and the Eg5 kinesin inhibitor monastrol (Mailhes et al. 2004) induced aneuploidy in mouse oocytes, while the tyrosine inhibitor vanadate resulted in spontaneous oocyte activation (Mailhes et al. 2003b).

Considerable research is being devoted to unraveling the molecular events underlying chromosome segregation, mainly in non-mammalian somatic cells (Lee & Orr-Weaver 2001, Nasmyth 2001, Uhlmann 2003a). The complexity of understanding the multifaceted events comprising chromosome segregation is illustrated by the approximately 5,000 yeast genes involved with chromosome segregation; many of these yeast genes have also been found in humans (Yanagida 2005). Chromosome segregation requires the temporally-coordinated interaction among: topoisomerases, chiasmata resolution, chromatin condensation, protein kinase and phosphatase reactions, microtubule kinetics, centrosomes, kinetochore-microtubule attachment and bipolar tension, kinetochores and their associated proteins, anaphase promoting complex, proteasomes, and cohesion, securin, and separin proteins. Although these events generally transcend among species and cell types (Yanagida 2005), little is actually known about the molecular mechanisms of chromosome segregation in mammalian oocytes (Collins & Crosignani 2005).

Thus, it emerges that the current state of mammalian germ cell aneuploidy research is mainly descriptive with little information about the underlying molecular mechanisms. It seems that the status of aneuploidy research can be summarized by an earlier statement, "The fact is that we are really not very much nearer today to pinning down the responsible mechanisms than we were twenty years ago when the human aneuploid conditions were first identified" (Bond & Chandley 1983).

Oocyte maturation

Disarray among the numerous events that occur during OM may lead to faulty chromosome segregation. Mammalian oogenesis is controlled by FSH, LH, autocrine and paracrine signaling, and unique growth factors (Anderiesz et al. 2000, Hiller 2001). Meiosis begins in the fetal ovary and is later arrested postpartum at the diplotene/ dictyate stage during meiosis I. Unless human oocytes undergo atresia, they remain in diplotene for decades until meiosis resumes prior to ovulation. Following proper hormonal stimulation, oocytes undergo the transition from diplotene to metaphase II (MII). This transition represents OM and involves nuclear and cytoplasmic remodeling and reduction to the haploid state (Dekel 1988, Racowsky 1993, Schultz 1986, Schultz 1988, Schultz et al. 1983). Upon completing OM, mammalian oocytes remain in MII for a limited time period until fertilization, spontaneous activation, or atresia. In most mammals, MII oocytes are ovulated and primed for fertilization, which initiates anaphase II. Among marine invertebrates, amphibians, fish, and mammals, species-dependent protein modifications by kinases and phosphatases account for differences in the initiation and the orderly temporal sequence of events during OM (Yamashita et al. 2000).

The intraoocyte titer of cyclic adenosine monophosphate (cAMP) influences the initiation of mammalian OM. Elevated levels of cAMP favor cAMPdependent kinase activity and the retention of oocytes in the diplotene/dictyate stage of meiotic prophase. Conversely, low cAMP levels shift the equilibrium toward cAMP-dependent phosphatase activity, which is needed for activating maturation promoting factor (MPF) and the progression of OM (Boernslaeger et al. 1986, Dekel 1988, Dekel 2005, Downs et al. 1989, Racowsky 1993, Schultz 1988, Schultz et al. 1983). MPF is composed of a 34 kDa catalytic subunit (p34^{cdc2}) that exhibits serine-threonine kinase activity and a 45 kDa cyclin B regulatory subunit. In addition to low cAMP levels, MPF activation also requires that p34^{cdc2} be dephosphorylated at the tyrosine 15 residue and coupled with cyclin B. Conversely, tyrosine phosphorylation deactivates MPF (Dunphy & Kumagai 1991, Gautier et al. 1991, Strausfeld et al. 1991). MPF activity oscillates; it is highest during metaphase and lowest during anaphase (Arion et al. 1988, Draetta & Beach 1988), fertilization (Choi et al. 1991, Collas et al. 1993, Fulka et al. 1992), and partheneogenesis (Barnes et al. 1993, Collas et al. 1993, Kikuchi et al. 1995).

Besides MPF, other kinases and phosphatases also play significant roles during OM (Swain & Smith 2007). Mitogen-activated protein kinases (MAPKs) represent serine-threonine protein kinases that phosphorylate many of the same sites as active MPF (Fan & Sun 2004, Lee et al. 2000, Murray 1998, Takenaka et al. 1998). MAPKs mediate intracellular signal transmission in response to external stimuli, participate in assembling the first meiotic spindle, and prevent rodent oocytes from entering interphase during the interval between meiosis I and II (Gordo et al. 2001, Sobajima et al. 1993, Verlhac et al. 1994). Unlike MPF, MAPK activity remains high throughout OM.

Mos, the c-mos protooncogene product, represents another serine-threonine kinase that is active during OM (Paules et al. 1989, Sagata 1997, Singh & Arlinhgaus 1997). It helps activate the MAPK pathway (Dekel 1996) and functions as a cytostatic factor by preventing oocytes from prematurely exiting MII (Hashimoto 1996, Sagata 1996). Oocytes from c-mos deficient mice fail to arrest at MII and subsequently spontaneous partheneogenic activation (Colledge et al. 1994, Hashimoto 1996, Hashimoto et al. 1994). In addition to their roles during OM, the kinases MPF, MAPKs, and Mos also have essential roles during the SAC, the anaphase promoting complex/cyclosome (APC), and the metaphase-anaphase

transition (MAT) (Dekel 1996, Dorée et al. 1995, Hyman & Mitchison 1991, Karsenti 1991, Murray 1998).

Correct temporal and synchronous interactions between specific enzymes and their target compounds are required for OM and the MAT, and faulty kinase and phosphatase activities have been shown to lead to downstream errors resulting in chromosome missegregation. Based on their antagonistic effects, relative to the degree of tyrosine p34^{cdc2} phosphorylation, unique kinase and phosphatase inhibitors have the potential for altering the rate of OM and for inducing spindle defects and aneuploidy in rodent oocytes (Jesus et al. 1991). Okadaic acid (OA) specifically inhibits the protein phosphatases 1 (PP1) and 2A (PP2A) that dephosphorylate serine and threonine residues (Cohen et al. 1990, Schönthal 1992). Following OA treatment of mouse oocytes and one-cell zygotes, hyperphosphorylation was noted in conjunction with abnormalities involving spindle fibers, multipolar spindles, kinetochores, and chromosome alignment (De Pennart et al. 1993, Schwartz & Schultz 1991, Vandre & Willis 1992, Zernicka-Goetz et al. 1993). Also, elevated frequencies of PCS and aneuploidy were found in mouse oocytes exposed to OA (Mailhes et al. 2003a). These effects may have been influenced by OA-induced hyperphosphorylation of microtubule organizing centers microtubule-associated proteins (MAPs) (Schwartz & Schultz 1991, Vandre and Willis 1992) and that hyperphosphorylated MAPs have a reduced affinity for microtubules (Zernicka-Goetz et al. 1993).

Furthermore, the kinase inhibitor (6-DMAP) disrupts p34^{cdc2} dimethylaminopurine kinase and MAPK activities and prevents meiotic progression of mouse oocytes (Rime et al. 1989, Szollosi et al. 1991, 1993). Protein phosphorylation and germinal vesicle breakdown (GVBD) were repressed when dictyate mouse oocytes were exposed to 6-DMAP prior to (GVBD); conversely, expulsion of the first polar body was inhibited when oocytes were exposed after GVBD (Rime et al. 1989). Other data showed that 6-DMAP inhibited protein phosphorylation in activated mouse MII oocytes and resulted in premature disappearance of phosphorylated proteins coupled with abnormalities involving polar body extrusion and pronuclei formation (Szollosi et al. 1993). Additionally, the pattern of protein dephosphorylation events noted in postovulatory and in vitro aged oocytes was correlated with increased frequencies of spontaneous oocyte activation and PCS (Angell 1994, Dailey et al. 1996).

A selected list of compounds associated with the metaphase-anaphase transition (MAT) during mitosis and meiosis and their general function is presented in Tables 1A and B. Such a listing is noncomprehensive and will certainly be modified and expanded as additional data become available.

The metaphase-anaphase transition (MAT) during mitosis and meiosis

Prior to the MAT and chromosome segregation, numerous events require coordination. These include: chromatin condensation, microtubule polymerization and their capture by kinetochores, correction of erroneous microtubule-kinetochore interactions, generation of microtubule-kinetochore tension, formation of a stable bipolar spindle, satisfaction of the spindle assembly checkpoint, removal of linkages between sister chromatid arms, and temporally-coordinated removal of centromeric cohesion proteins.

Although chromosome segregation during meiosis appears to largely depend on mechanisms analogous to those of mitosis, both general cell-cycle regulators and unique proteins have been identified during meiosis (Nasmyth 2001). Three major modifications of the mitotic machinery occur during meiosis. First, synapsis and recombination (chiasmata formation) occur between homologues prior to anaphase I. Second, the two sister chromatids of each chromosome must segregate syntelically while the homologues segregate amphitelically at anaphase I. Third, the cohesion between sister chromatid centromeres must remain intact until anaphase II onset in order for sister chromatids to segregate amphitelically.

Before discussing the cytologic and biochemical changes reported in aged oocytes and their effect on chromosome segregation, an overview of the physical and chemical linkages between chromosomes, kinetochore-microtubule interactions, the spindle checkpoint assembly complex, and the metaphase-anaphase

transition is presented.

Resolution of DNA catenations, chromatin condensation, and removal of cohesion arm proteins

Following DNA replication, sister chromatids are linked by DNA double-strand catenations and cohesion proteins. These physical and chemical linkages help prevent precocious separation prior to anaphase onset, which can result in aneuploidy. However, these linkages must be timely removed so that sister chromatids orient syntelically at meiotic anaphase I and undergo amphitelic orientation during meiotic anaphase II and mitotic anaphase. Most of the DNA catenations on chromosome arms are lost prior to prophase; whereas, the majority of chromosome arm cohesin proteins are removed during prophase. However, it is essential that centromeric catenations and cohesions remain intact until correct kinetochoremicrotubule attachment and tension have been attained. Otherwise, premature loss of centromeric cohesion inevitably predisposes cells to abnormal chromosome segregation.

Abnormal function of proteins required for establishing and maintaining the physical linkages between sister chromatids may result in aneuploidy and apoptosis. The Spo11 protein helps initiate meiotic recombination by generating DNA double-strand breaks, and disruption of Spo11 activity in mouse spermatocytes and oocytes resulted in synapticdeficient germ cells and apoptosis (Baudat et al. 2000, Romanienko et al. 2000). Also, the synaptonemal complex protein 3 (Sycp3) helps maintain the structural integrity of meiotic chromosome axes. Mutant Sycp3 mammalian oocytes were ineffective in repairing DNA double-strand breaks and exhibited higher frequencies of aneuploidy (Wang & Hoog 2006).

Table 1A. Selected regulators of mitosis and meiosis.

Cohesion complex subunit proteins identified during mitosis	Cohesion complex subunit proteins identified during meiosis	Spindle assembly checkpoint (SAC) proteins
Smc1 and Smc3 (structural maintenance of chromosomes) – core cohesion complex subunit proteins.	Smc1α – replaces mitotic Smc1.	Mad1 (mitotic-arrest deficient) – helps recruit Mad2 to kinetochores that lack tension and attachment. Forms a complex with Cdc20, Mad2, and Mad3.
Scc1/Rad21/Mcd1 (sister chromatid cohesion) – cleaved by separase at mitotic anaphase onset.	Smc1β – replaces mitotic Smc3.	Mad2 – forms a complex with Cdc20, Mad1, and Mad3 and inhibits APC ^{Cdc20} activity.
Scc3 (SA1/STAG1, SA2/STAG2) – phosphorylated by Aurora B and Plk1 kinases.	STAG3 – replaces mitotic Scc3.	Mad3/BubR1 – helps recruit Mad1 and Mad2 to kinetochores that lack attachment and tension; forms a complex with Cdc20, Mad1, Mad2, and Bub3.
Scc2 and Scc4 – enhance the binding of Scc1 and Scc3 to kinetochores that lack attachment and tension.	Rec8 – replaces mitotic Scc1.	Bub1 (budding inhibited by benzimidazole) – a serine -threonine protein kinase that binds with Bub3, Mad1, Mad2, Mad3, and CenP-E and helps recruit Shugoshin proteins to kinetochores. Bub2/Mps1 – helps regulate APC ^{Cdh1} , mitotic exit, chromosome replication, and cytokinesis. Bub3 – binds with Bub1 and Mad3 and helps regulate APC activity.

Table 1B (continued from 1A). Selected regulators of mitosis and meiosis.

Other compounds	Function	
APC/C (anaphase promoting complex/cyclosome)	A 20S multi-subunit ligase that ubiquinates specific proteins targeted for proteolysis by proteasomes. APC ^{cdc20} targets securin for proteolysis at the MAT; whereas, APC ^{cdh1} targets mitotic cyclins and other substrates for degradation at mitotic exit. The cdh1 protein activates the APC from late anaphase through G1.	
Astrin	A microtubule and kinetochore protein that has roles involving sister chromatid adhesion, centrosome integrity, and separase activity.	
Aurora B kinase-Survivin- Inner Centromeric Protein- Borelin	A chromosome passenger protein complex with multiple roles: recruits SAC proteins and CenP-E to kine-tochores lacking tension, reduces the affinity of Scc1 and Scc3 to chromatin via phosphorylation, helps coordinate correct kinetochore-microtubule attachments, and cytokinesis.	
Cdc20 (cell division cycle 20)	Helps activate the APC when not bound by SAC proteins, recruits substrates to the APC, and forms a complex with Mad2, Mad3, and Bub3.	
Cdks (Cyclin-dependent kinases)	Enzymes composed of a kinase subunit and an activating cyclin subunit. Cdks are needed for kinase activity.	
CenP-E (centromeric protein E)	A motor protein that facilitates kinetochore-microtubule stabilization, binding of SAC proteins to kinetochores, and enhanced Mad3 activity.	
Dynein/Dynactin	A microtubule motor protein required for the removal of the Rod-Zw10-Zwilch complex, Mad1, Mad2, and Mad3 from properly aligned kinetochores.	
Kinesin	A microtubule motor protein.	
MAPK/Mps1 (mitogen- activated protein kinase)	A serine-threonine kinase that helps recruit CenP-E to kinetochores. It also interacts with Mos protein for MPF activation.	
MCAK/Kip 2-3 (microtubule centromere-associated kinesin)	Depolarizes microtubules and helps correct aberrant kinetochore-microtubule attachments.	
Monopolin/Mam1/CdcPlk	Facilitates amphitelic orientation of homologues and syntelic orientation of sister chromatids during meiosis I.	
Mos	The protein product of the <i>c-mos</i> proto-oncogene. Mos is an active component of a cytostatic factor. In conjunction with cyclin-dependent kinase 2, Mos is required for the metaphase II arrest of mature mouse oocytes and for activating MAPK.	
MPF (maturation promoting factor)	A protein kinase comprising p34 ^{cdc2} /Cdk1 and cyclin B. MPF phosphorylates and helps regulate chromosome condensation, nuclear envelope breakdown, and spindle formation.	
Op18/Stathmin (oncoprotein 18)	A protein that destabilizes microtubules; it is inhibited by phosphorylation.	
P31/Cmt2	A protein involved with changing the stereo-configuration of Mad2.	
Plk1 (Polo-like kinase 1)	A serine-threonine kinase that phosphorylates Scc1, Scc3, and Rec8 and reduces their affinity to chromosome arms.	
PP2A (protein phosphatase 2A)	Dephosphorylates Sgo1 and supports Rec8 maintenance.	
Proteasomes	Proteinase complexes that degrade intracellular ubiquinated compounds.	
Rod-Zw10-Zwilch	A protein complex that helps recruit dynein, Mad1, and Mad2 to unaligned kinetochores.	
Securin/Pds1/Cut2p	An APC substrate that binds to and inhibits separase activity.	
Separase/Esp1	A protease that is inactive when bound by securin. However, upon securin proteolysis, separase is free to cleave centromeric Scc1 cohesions at mitotic anaphase onset, Rec8 at chromosome arms at meiotic anaphase I onset, and centromeric Rec8 at meiotic anaphase II onset.	
Shugoshins (Sgo1 & Sgo2)	Sgo1 is a conserved eukaryotic kinetochore protein that protects centromeric Rec8 from separase activity during meiosis I, but not during meiosis II. Sgo1 enhances dephosphorylation and cohesion removal by recruiting PP2A to kinetochores. Shugoshins also have roles in chromosome congression, kinetochoremicrotubule attachment, and syntelic orientation of sister chromatids during meiotic anaphase I	
Slk19p	The <i>Saccharomyces cervisiae</i> Slk19p gene product is needed for proper chromosome segregation during meiosis I.	
Sororin	An APC protein substrate that interacts with Shugoshins to facilitate cohesion binding to chromatin.	
Spindly	A protein that helps inactivate the APC and participates with dynactin in recruiting dynein to kinetochores.	
Spo11	Helps initiate meiotic recombination.	
Sycp3	Helps maintain the structural integrity of meiotic chromosome axes.	
Topoisomerase II (Topo II)	An enzyme that disrupts intercalated loops of DNA and then reanneals the DNA broken ends.	
UbcH10	An enzyme that ubiquinates Cdc20. This facilitates the release of Mad2 and BubR1 from Cdc20, inactivates the SAC, and helps activate the APC.	
Usp44	An enzyme that deubiquinates Cdc20. This enhances the retention of Mad2 by Cdc20, promotes SAC activity, and inhibits APC activation.	

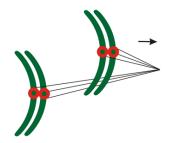
Besides Spo11 and Sycp3, other proteins also participate in resolving chiasmata, condensing chromatin, and facilitating chromatid cohesion and separation. Topoisomerase II (topo II) disrupts the intercalated loops on adjacent chromatids by catalyzing a DNA double-strand break in one of the sister chromatids. This enables the other sister chromatid to pass through the broken ends followed by topo II re-annealing the broken ends (Champoux 2001, Downes et al. 1991, Holm et al. 1989, Rose et al. 1990, Wang 2002). Sister chromatids remained physically linked and fail to separate during anaphase in cells lacking topo II activity (Dinardo et al. 1984). Thus, topo II activity is required for the transition from prophase to metaphase I (MI) in mouse spermatocytes (Cobb et al. 1997) and for proper chromosome segregation in mammalian somatic cells (Gorbsky 1994), mouse oocytes (Mailhes et al. 1994), and mouse spermatocytes (Marchetti et al. 2001). Besides topo II, other proteins also help disentangle and condense chromatin. The structural maintenance of chromosome proteins (Smc 2 and Smc4) bind to chromatid axes and help disentangle and condense sister chromatids and homologues during prophase and prometaphase (Hagstrom et al. 2002, Lavoie et al. 2002, Ono et al. 2004).

In addition to the physical linkages between sister chromatids, highly-conserved, multi-subunit protein cohesin complexes adhere to eukaryotic chromosomes and help conjoin sister chromatids and homologues (Marston & Amon 2004, Nasmyth & Schleiffer 2004). Some of the cohesin subunits differ between mitotic and meiotic cells (van Heemst & Heyting 2000). Such distinctions may reflect the need for maintaining cohesion during meiotic recombination and the requirement for sister chromatids to undergo syntelic segregation during meiotic AI and amphitelic segregation during AII (Revenkova & Jessberger 2005). Eukaryotic mitotic cells encode homologs of the Scc1/ Rad21, Scc3 (SA1/STAG1, SA2/STAG2), Smc1, and Smc3 cohesion protein subunits (Haering & Nasmyth 2003, Parra et al. 2004, Prieto et al. 2002). Both Scc1 and Scc3 enhance cohesion by binding to numerous sites on chromosomes, while the core subunit proteins Smc1 and Smc3 are needed for both sister chromosome cohesion and DNA recombination (Eijpe et al. 2000, Haering et al. 2002, Lavoie et al. 2002, Petronczki et al. 2003). Scc2 and Scc4 represent a separate protein complex in yeast that facilitates the binding of cohesion proteins to centromeres and chromosome arms (Ciosk et al. 2000). The following differences in cohesion subunits have been found in meiotic cells: Rec8 replaces Scc1 in both budding yeast (Klein et al. 1999, Watanabe & Kitajima 2005) and mammals (Eijpe et al. 2003, Parisi et al. 1999); STAG3 replaces

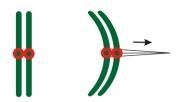
the Scc3 subunits SA1 and SA2 in mammals (Prieto et al. 2001, 2004); Smc1α and Smc1β replace Smc1 (Revenkova et al. 2001); and homologs for Smc3 have not been identified.

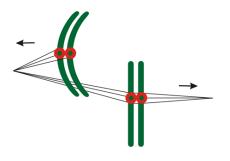
Cohesin proteins must remain located on centromeres until anaphase onset. Otherwise, early or nonremoval can result in PCS or nondisjunction, respectively. The retention and removal of cohesion proteins require the activities of unique kinase, phosphatase, separase, and Shugoshin proteins. During mitotic prophase-prometaphase and meiotic MII, most of the arm cohesins are lost following phosphorylation of the Scc1 and Scc3 cohesin subunits by Aurora B kinase and Polo-like kinases (PLKs) (Alexandru et al. 2001, Clyne et al. 2003, Hauf et al. 2005, Lee & Amon 2003, Losada et al. 2002, Sumara et al. 2002, Yu & Koshland 2005). On the other hand, loss of centromeric cohesin is mediated by separase cleavage of Scc1 during mitotic anaphase onset (Uhlmann et al. 2000a, Uhlmann 2001, Waizenegger et al. 2000). Additionally, phosphorylation by PLKs also enhances the removal of centromeric cohesins (Clarke et al. 2005, Dai et al. 2003, Goldstein 1980, Lee et al. 2005). Although PLK phosphorylation has been detected during meiosis in female mice and the first zygotic division, its multi-faceted role requires additional investigation (Pahlavan et al. 2000). As will be mentioned later, both Aurora B kinase and PLKs have additional functions during cell division.

During meiosis I, DNA catenations and chromosome arm cohesins must be removed prior to anaphase so that homologues segregate amphitelically and sister chromatids segregate syntelically. Such removal of the meiosis-specific Rec8 cohesin protein on chromosome arms during meiosis I is facilitated by separase. However, it is essential that centromeric Rec8 remain intact between sister chromatids during anaphase I so that they can undergo syntelic orientation (Pasierbek et al. 2001, Siomos et al. 2001). Rec8 displays a similar pattern of localization in mammalian oocytes and spermatocytes and yeast; it is lost from chromosome arms during the MI-AI transition and from sister centromeres at the onset of AII (Lee et al. 2003, 2006).


Mammalian and yeast cells that lack cohesin proteins exhibited elevated frequencies of PCS and chromosome missegregation (Hoque & Ishikawa 2002, Michaelis et al. 1997, Sonoda et al. 2001, Tanaka et al. 2000). The Saccharomyces cerevisiae Slk19p gene is required for proper chromosome segregation during meiosis I. Slk19p mutants failed to maintain Rec8 at centromeres during anaphase I and displayed elevated levels of PCS and improper amphitelic segregation of sister chromatids (Kamieniecki et al. 2000). PhosMII oocytes. The higher frequencies of PCS noted in

oocytes was proposed to result from an OA-induced shift in the kinase-phosphatase equilibrium that favored enhanced kinase activity (Mailhes *et al.* 2003a).


Centromeric Rec8 must be protected from separase activity during meiosis I in order to facilitate syntelic orientation of sister chromatids during AI. This is enhanced by a group of evolutionarily-conserved eukaryotic Shugoshin (Sgo) proteins and


<u>Amphitelic</u> - Proper attachment of homologous chromosomes to a bipolar spindle and their orientation to opposite poles. Each daughter cell is expected to receive one chromosome (composed of two chromatids) resulting in a haploid state.

<u>Syntelic</u> - Improper attachment of both chromosomes to a monoastral spindle and their orientation to the same pole. One daughter cell is expected to receive both chromosomes (hyperhaploid), while the other cell will be minus a chromosome (hypohaploid).

Monotelic - Improper attachment of one chromosome to a monoastral spindle and its orientation to one pole. The other chromosome is neither attached nor oriented. One daughter cell is expected to receive one chromosome (haploid), while the other daughter cell will be minus a chromosome (hypohaploid).

Merotelic - Improper attchment of one chromosome to a bipolar spindle and its non-orientation. The other chromosome is attached to a monoastral spindle and oriented to one pole. Onne daughter cell is expected to receive one chromosome (haploid) while the fate of the other chromosome is uncertain. Merotelic attachments are believed not to activate the SAC and may be corrected prior to anaphase onset (Cimini et al., 2004; Cimini, 2007). Also, anaphase can still occur in the presence of unattached kinetochores, microtubule disruption, and abnormal chromosome orientation (Rieder and Palazzo, 1992; Rieder et al., 1994).

Figure 1. Kinetochore-microtubule attachments and probable outcomes during meiosis I.

their orthologs (Katis et al. 2004a, Kitajima et al. 2004, Salic et al. 2004). Sgo1 in budding yeast (Kitajima et al. 2004) and its paralogue Sgo2 in fission yeast (Rabitsch et al. 2004) were initially identified and require Bub1 for proper centromeric localization (Kitajima et al. 2004). Subsequently, human and mouse Sgo1 and Sgo2 proteins were recognized (McGuinness et al. 2005, Tang et al. 2004, Watanabe & Kitajima 2005). During mitosis and meiosis in higher eukaryotes, Sgo1 helps maintain sister centromere cohesion by protecting centromeric Rec 8 from separase until sister chromatids undergo amphitelic segregation at anaphase II onset (Goulding & Earnshaw 2005, Kitajima et al. 2004, Marston et al. 2004, Tang et al. 2004, Watanabe & Kitajima 2005). In budding yeast, Sgo1disappears during anaphase I (Kitajima et al. 2004, Rabitsch et al. 2004); whereas, fission yeast Sgo2 persists until meiosis II (Katis et al. 2004a, Kitajima et al. 2004). Sgo2 in fission yeast represents a paralogue of Sgo1 and is required for chromosome congression at metaphase, proper kinetochore-microtubule attachment, and syntelic orientation of sister chromatids during AI (Kitajima et al. 2004, Rabitsch et al. 2004). Depletion of either Sgo1 (Wang & Dai 2005) or Sgo2 (Kitajima et al. 2004, Rabitsch et al. 2004) during meiosis I led to PCS and chromosome missegregation, and knock-out of Sgo1 in fission yeast resulted in chromosome missegregation (Gregan et al. 2005).

PP2A colocalizes with centromeric Sgo1 in human mitotic and meiotic cells. This enhances efficient PP2A dephosphorylation of Rec8, which renders it resistant to subsequent phosphorylation and cleavage. Furthermore, reduced PP2A activity resulted in loss of centromeric cohesion during mitosis and meiotic anaphase I accompanied by random sister chromatid segregation during meiotic anaphase II (Kitajima et al. 2006, Riedel et al. 2006, Tang et al. 2006). A human shugoshin-like protein (possibly orthologous to yeast Sgo1) localized to HeLa cell centromeres during prophase prevented phosphorylation of the Scc3 cohesin subunit. This protein normally disappears at anaphase onset, and its depletion by RNAi resulted in PCS (McGuinness et al. 2005).

Kinetochore-microtubule interaction, correction of faulty attachments, generation of tension and stabilization, and biorientation

Kinetochores help regulate chromosome segregation during mitosis and meiosis by mediating three main functions: attaching chromosomes to microtubules, facilitating microtubule dynamics essential for chromosome movement, and providing the site for spindle checkpoint activity. Kinetochores may initially capture

microtubules by four different modes (Biggins & Walczak 2003, Cinini et al. 2001): (1) Amphitelic sister kinetochores orientated to opposite poles of a bipolar spindle, (2) Syntelic – both kinetochores of sister chromatids attached to a monastral spindle, (3) Monotelic - only one kinetochore is orientated to a pole while the other is unattached, and (4) Merotelic – one kinetochore is attached to both poles (Figures 1 & 2). During metaphase of mitosis and meiosis II, amphitelic orientation of sister chromatids is needed: whereas during meiosis I, syntelic attachment of sister chromatids and amphitelic attachment of homologues are required. Persistent monotelic and merotelic attachments, if not corrected, can lead to chromosome missegregation; whereas, merotelic attachments are not detected by the spindle checkpoint (Cimini 2007, 2008, Cimini et al. 2001, 2004, Rieder & Maiato 2004, Salmon et al. 2005).

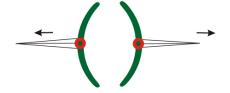
Kinetochores contain both constitutive (structural) proteins (Amor et al. 2004) and transient (passenger) proteins that help coordinate various events during mitosis and meiosis (Duesbery et al. 1997, Vagnarelli & Earnshaw 2004). The constitutive centromeric proteins (CENP-A, B, C, D) are involved with: microtubule capture, correcting aberrant interactions, binding of spindle checkpoint proteins, and chromosome congression to the metaphase plate (Craig et al. 1999, Rieder & Salmon 1998, Simerly et al. 1990, Vagnarelli & Earnshaw 2004). Whereas, the transient proteins reside in the nucleus during G2, associate with chromosomes during prophase, localize to centromeres during metaphase, and transfer to the spindle at anaphase onset (Earnshaw & Cooke 1991).

The Aurora A and Aurora B serine-threonine protein kinases help support mitotic spindle assembly by phosphorylating the structural and motor proteins that are essential for spindle assembly and anaphase onset (Giet et al. 2005, Meraldi et al. 2004). The biorientation of homologues during meiotic MI and that of sister chromatids during mitosis and meiotic MII resembles a state of equilibrium between sister chromatid cohesion and microtubule-kinetochore tension (Miyazaki & Orr-Weaver 1994, Tanaka et al. 2000, Toth et al. 1999). Plk1 and Aurora B kinases are also involved with a fundamental function that decreases the incidence of chromosome missegregation. These kinases help correct aberrant microtubule-kinetochore attachments by generating kinetochore-microtubule tension (Ahonen et al. 2005, Stern 2002, Tanaka et al. 2002). After proper correct microtubule-kinetochore attachment and tension have been attained, microtubule polymerization-depolymerization is minimized while centromeres bi-orient and align on the metaphase plate. In addition to Aurora B kinase, the de-

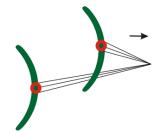
polymerase activity of mitotic centromere associated kinesin (MCAK) helps coordinate the release of merotelic kinetochore-microtubule attachments (Kallio et al. 2002, Knowlton et al. 2006). Also, the SPO13 protein and the monopolin protein complex found during meiosis I in fission yeast facilitate syntelic orientation of sister chromatids (Katis et al. 2004b, Lee et al. 2004).

Aurora B-inner-centromeric protein The (INCENP)-Survivin-Plk1-Borealin transient protein kinase complex is involved with several functions involving chromosome segregation and cytokinesis; these include: (1) chromatin decondensation, (2) reducing the affinity of Scc1 for chromatin at chromosome arms, (3) generating tension at kinetochores, (4) organizing a bipolar spindle, (5) targeting SAC proteins to kinetochores, (6) initiating cytokinesis, (7) inhibiting the APC, (8) sensing and correcting abnormal microtubule-kinetochore attachments, and (9) influencing spindle geometry by phosphorylating MCAK (Adams et al. 2001a, b, Dewar et al. 2004, Shang et al. 2003, Tanaka et al. 2002, Vagnarelli & Earnshaw 2004). INCENP, Survivin, and Plk1 are needed for the proper kinetochore localization of Aurora B and for correcting merotelic microtubule-kinetochore attachments (Bolton et al. 2002, Ditchfield et al. 2003, Goto et al. 2006, Tong et al. 2002). Survivin also has important roles during spindle checkpoint signaling and in correcting abnormal kinetochore-spindle fiber attachments (Carvalho et al. 2003, Hwang et al. 1998, Johnson et al. 2004, Lampson et al. 2004, Lens & Medema 2003, Taylor et al. 2001, 2004). Aurora B kinase activity helps to destabilize syntelic attachments of sister chromatids during meiosis II and mitosis; this enhances the re-formation of correct amphitelic orientation (Hauf et al. 2003, Tanaka et al. 2002). Furthermore, overexpression of a stable form of Aurora B in mammalian somatic cells led to an uploidy (Nguyen et al. 2005).

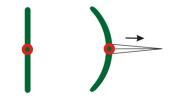
Spindle assembly checkpoint (SAC) protein comcorrection of faulty kinetochoreplex and microtubule attachments

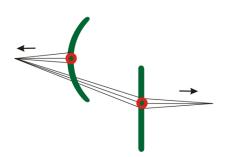

Chromosome segregation represents an irreversible event; orientation errors cannot be rectified after anaphase onset. In order to reduce the risk of missegregation, it is essential that a bipolar spindle be formed following correct microtubule-kinetochore attachment and tension. This is not left to chance. A transient mechanico-chemo surveillance mechanism or spindleassembly checkpoint (SAC) protein complex helps insure that proper chromosome alignment and kinetochore-microtubule tension are attained prior to anaphase onset. However, the SAC is not foolproof; it can

be overridden. Anaphase can still occur following exposure of cells to microtubule disrupting drugs, in the presence of abnormal spindle bipolarity, and in the presence of unattached kinetochores and abnormal chromosome orientation (Andreassen et al. 1996, Rieder & Palazzo 1992, Rieder et al. 1994).


Most SAC data have been derived from nonmammalian somatic cells, and although differences between mitotic and meiotic SAC proteins have been found, it appears that the basic molecular pathways are similar between mitosis and meiosis and among species (Dai et al. 2003a, Lee & Orr-Weaver 2001, Nasmyth 2001, Uhlmann 2001, 2003a). Three broad groups of interacting proteins comprise the SAC: (1) transport/motor proteins [dynein, Zw10, Rod] that convey unique SAC proteins from the cytoplasm to kinetochores, microtubules, and spindle poles; (2) binding proteins [Aurora B, MAPK, Mps1, Bub1, CENP-E] that bind certain SAC proteins to kinetochores; and (3) SAC proteins [Mad1, Mad2, Mad3/BubR1,Bub1, Bub3, that transiently localize to kinetochores and temporally inhibit the MAT.

If defects in the integrity of kinetochorespindle tension and attachment are detected, Mad1, Mad2, Mad3/ BubR1, Bub1, and Bub3 transiently associate with kinetochores by binding to Cdc20 (Fang 2002, Vigneron et al. 2004). Such binding inhibits APC activity and delays anaphase by blocking the ubiquination and subsequent proteolysis of securin and cyclin B by proteasomes (Bharadwaj & Yu 2004, Howell et al. 2004, Li & Benezra 1996, Luo et al. 2000, Musacchio & Hardwick 2002, Nasmyth 2005, Nicklas 1997, Rieder et al. 1994, Shah et al. 2004, Sluder & McCollum 2000, Taylor et al. 1998, 2004, Weiss & Winey 1996, Zhou et al. 2002).


Although less information is available about SAC proteins in mammalian germ cells relative to other cell types, several SAC proteins have been identified in mammalian oocytes. A functional Mad2dependent spindle checkpoint was identified during meiosis in both mouse (Homer et al. 2005a, Tsurumi et al. 2004, Wassmann et al. 2003) and rat (Zhang et al. 2004) oocytes. Mad2 binds to unattached kinetochores and is released following proper microtubulekinetochore tension and attachment (Homer et al. 2005a, Kallio et al. 2000, Ma et al. 2005, Steuerwald et al. 2005, Wassmann et al. 2003, Zhang et al. 2004, 2005). Mad1 helps recruit Mad2 to unattached kinetochores and was detected in mouse oocytes from the GV stage to MII (Chen et al. 1998, Chung & Chen 2002, Zhang et al. 2005). In addition to Mad1 and Mad2, Mad3/BubR1 activity was also detected in mouse oocytes (Tsurumi et al. 2004). Lastly, Bub1 was found on kinetochores from GVBD until early AI;


Amphitelic - Proper attachment of chromatids to a bipolar spindle and their orientation to opposite poles. Each daughter cell receives one chromatid.

Syntelic - Improper attachment of both chromatids to a monoastral spindle and their orientation to the same pole. One daughter cell is expected to receive both chromatids (hyperhaploid), while the other cell will be minus a chromatid (hypohaploid).

Monotelic - Improper attachment of one chromatid to a monoastral spindle and its orientation to one pole. The other chromatid is neither attached nor oriented. One daughter cell is expected to receive one chromatid (haploid), while the other daughter cell will be minus a chromatid (hypohaploid).

Merotelic - Improper attachment of one chromatid to a bipolar spindle and not oriented to either pole. The other chromatid is properly oriented to one pole. One daughter is expected to receive one chromatid (haploid), while the fate of the merotelically-oriented chromatid is uncertain.

Figure 2. Kinetochore-microtubule attachments and probable outcomes during meiosis II and mitosis.

then, it disappeared at late AI and re-appeared at MII (Brunet et al. 2003). Although SAC proteins are required for checkpoint functions during meiosis I and II in mouse oocytes, they appear non-essential for maintaining the cytostatic factor arrest during MII (Tsurumi et al. 2004).

Defective SAC function can lead to aneuploidy and abnormal cell cycle progression in mitotic and meiotic cells. Diminished Mad2 and Mad3/BubR1 activities resulted in PCS and aneuploidy in mammalian oocytes (Dai et al. 2004) and somatic cells (Michel et al. 2001), as well as malignant transformation in human cells (Hanks et al. 2004). Chromosome missegregation followed ablation of Mad2 activity during budding yeast meiosis I (Shonn et al. 2000), and deletion of one MAD2 allele led to faulty SAC activity, PCS, and chromosome missegregation in human cancer cells and mouse fibroblasts (Michel et al. 2001). Also, RNA-interference reduction of Mad2 protein levels in human somatic cells induced premature cyclin B degradation, abnormal spindles, and cell death (Michel et al. 2004). Knockout of Mad2 in mouse embryonic cells resulted in aneuploidy and apopotosis (Dobles et al. 2000). Microinjection of anti-Mad1 or anti-Mad2 into GV-stage rodent and pig oocytes induced abnormalities in spindle morphology, chromosome alignment, and chromosome segregation (Ma et al. 2005, Zhang et al. 2004, 2005). Other data from mouse oocytes showed that depletion of Mad2 protein during meiosis I resulted in premature loss of securin proteins and cyclin B and elevated levels of aneuploidy; whereas, microinjection of hMad2-GFP mRNA during meiosis I inhibited homolog segregation (Homer et al. 2005a). Finally, an excess of Mad2 in Xenopus oocytes caused in a delay of chromatid segregation during anaphase II (Peter et al. 2001).

Apart from alterations to Mad2, anomalies in other SAC proteins resulted in cell cycle perturbations and chromosome missegregation. Partial down regulation of Mad1 in human somatic cells led to spindle checkpoint inactivation and aneuploidy (Kienitz *et al.* 2005). Deletion of the *Bub1* gene in fission yeast led to loss of centromeric Rec8 and amphitelic segregation of sister chromatids during meiosis I (Bernard *et al.* 2001); whereas, biallelic mutations of human *BUB1B* were associated with aneuploidy and cancer (Hanks *et al.* 2004). Knockout of BubR1 alleles in mice resulted in reduced BubR1 protein expression that was correlated with elevated levels of aneuploidy in fibroblasts, spermatocytes, and oocytes (Baker *et al.* 2004).

Other data from mice showed that disruption of Bub3 led to cytogenetic anomalies and embryonic lethality (Kalitsis *et al.* 2000). Exposure of HeLa cells to 5-10 nM taxol was followed by disassociation of Mad2 and BubR1 complexes, cell-cycle delay and chromosome missegregation (Ikui *et al.* 2005). Earlier work also showed that the antineoplastic agent taxol can induce dose-response effects of maturation delay, spindle defects, and aneuploidy in mouse oocytes and one-cell zygotes (Mailhes *et al.* 1999).

Recent data have shown that oocyte aging is correlated with altered Mad2 titers and cytogenetic abnormalities. Postovulatory aging of mouse oocytes resulted in a time-dependent reduction in the number of Mad2 transcripts and a concomitant elevation in the frequencies of PCS and premature anaphase (Steuerwald *et al.* 2005). Also, in vitro aging of pig oocytes led to a reduction of Mad2 expression in conjunction with abnormal chromosome segregation (Ma *et al.* 2005). In human oocytes, hMAD2 was detected during meiosis I (Homer *et al.* 2005b), and hMAD2 mRNA titers were shown to decrease with advancing maternal age (Steuerwald *et al.* 2001). These findings suggest that altered SAC activity, as detected in oo-

cytes aged in vivo and in vitro, represents one of many potential molecular mechanisms responsible for the genesis of aneuploidy.

Removal of centromeric cohesions and the metaphase-anaphase transition (MAT)

After proper microtubule-kinetochore tension and attachment has been attained or the SAC over-ridden. SAC proteins detach from Cdc20. This enables APC activation - a large protein complex that ubiquinates specific proteins (cyclin B, Securin, and possibly Sgo1) that are subsequently proteolyzed by proteasomes (Craig & Choo 2005, Glickman & Ciechanover 2002, Kotani et al. 1999, Salic et al. 2004). Proteasomes consist of multicatalytic 26S proteases and a 20S central core catalytic subunit bordered by two 19S components that hydrolyze C-terminal peptide bonds to acidic, basic, and hydrophobic amino-acid residues (Coux et al. 1996, Glickman & Ciechanover 2002, Goldberg 1995). This ubiquination and degradation of cellular proteins represent a tightly-regulated, temporally-controlled process that oversees numerous cellular processes including cell division (Glickman & Ciechanover 2002).

APC-mediated proteolysis during the somatic cell cycle depends upon both APC^{Cdc20} and APC^{Cdh1}. APC^{Cdc20} is active from prometaphase until the MAT; whereas, APC^{Cdh1} becomes active during anaphase and persists until the S phase. Various regulatory pathways control APC^{Cdc20} and APC^{Cdh1} activities. Phosphorylation of APC subunits by Cdk1 and Plk1 facilitate Cdc20 binding and APC activation (Glover *et al.* 1998, Sumara *et al.* 2004). Conversely, Emi1 inhibits Cdc20 binding to APC. Prior to mitosis, phosphorylation by Cdk1 and Cdk2 kinases inactivates Cdh1. However, as cells exit mitosis following cyclin B proteolysis, Cdh1 is dephosphorylated and APC^{Cdh1} mediates the proteolysis of Cdc20 and Plk1 (Peters 2002, Zachariae & Nasmyth 1999). APC^{Cdc20} targets cyclin B for degradation, which leads to Cdk1 inactivation. Also, APC^{Cdc20} activity leads to securin inactivation, which liberates separase upon satisfaction of the SAC.

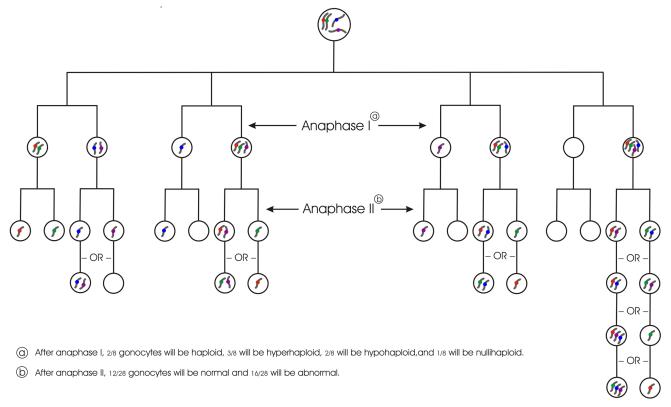
Prior to normal chromatid segregation, the securin proteins, which inhibit separase activity, are ubiquinated by the APC and subsequently proteolyzed by proteasomes (Cohen-Fix et al. 1996, Uhlmann et al. 1999). Securin (Pds1p in budding yeast) activity is abrogated after each meiotic anaphase onset (Salah & Nasmyth 2000). In human somatic cells, D-box mutants of securin that were not degraded during metaphase resulted in chromosome missegregation (Hagting et al. 2002). This proteolysis of securin liberates the cysteine protease separase, which cleaves centromeric Scc1 during mitotic anaphase onset (Nasmyth

2002, Uhlmann et al. 1999, Waizenegger et al. 2002), Rec8 from chromosome arms during anaphase I (Agarwal & Cohen-Fix 2002, Buonomo et al. 2000, Jallepalli et al. 2001, Uhlmann 2003b), and Rec8 from centromeres during anaphase II (Waizenegger et al. 2000). Similar to mitosis, both APC and separase activities have been shown essential for proteolyzing securin and cyclin B prior to homolog segregation in mouse oocytes (Herbert et al. 2003, Terret et al. 2003).

Following inactivation or overriding of the SAC, the MAT represents a point-of-no-return. The temporal coordination of the MAT is directed by the interaction of unique biochemical events (kinases, phosphatases, proteolysis, topoisomerases, and motor proteins) with cellular organelles (kinetochores, centromeres, centrosomes, spindle fibers) (Dorée et al. 1995, Kirsch-Volders et al. 1998). During mitosis, the positive ends of microtubules are embedded in kinetochores and the negative ends are lodged in centrosomes. In conjunction with motor proteins, chromosome movement towards centrosomes arises from depolymerization of both the minus and positive ends of microtubules. Even though the MAT appears straightforward from a cytogenetic viewpoint, it is actually a complex series of events involving the coordination of independent processes that depend on prior checkpoint release and APC activation.

Separation of sister chromatids occurs by two independent processes: removal of cohesins from chromosomes and microtubule-dependent movement of chromatids to opposite poles. Chromatid arm separation and centromere separation (anaphase A) are independent events with different mechanisms (Rieder & Salmon 1998, Sluder & Rieder 1993), and chromatid separation does not initiate poleward movement of chromatids (anaphase B) (Zhang & Nicklas 1996). Also, sister chromatid separation does not directly depend on spindle formation because chromatids can separate in the absence of spindle attachment (Nasmyth et al. 2000, Rieder & Palazzo 1992) and even when MPF activity is elevated (Sluder & Rieder 1993).

Mishaps can occur during the MAT. If sister chromatids separate too early, they may both segregate to the same pole resulting in aneuploidy. Conversely, if sister chromatids fail to segregate, the outcome can range from an euploidy to diploid gametes. In order to reduce the occurrence of such cytogenetic abnormalities, the MAT is not left to chance alone; it normally depends on satisfaction of the SAC and APC activation.


Premature Centromere Separation (PCS)

PCS and nondisjunction represent the major cytogenetic errors that lead to aneuploidy (Angell 1994, Dailey et al. 1996, Fragouli et al. 2006, Lim et al. 1995, Pellestor et al. 2005, Plachot 2003, Vialard et al. 2006, Wolstenholme & Angell 2000). PCS denotes the separation of sister chromatids or homologues prior to anaphase; whereas, nondisjunction results from the failure of chromatids or homologues to properly separate during anaphase. The link between PCS and aneuploidy during meiosis is that if homologues or sister chromatids separate prior to anaphase I, each of the homologues or sister chromatids may undergo random segregation (Figure 3). Also, PCS of sister chromatids prior to anaphase II onset can result in random segregation instead of amphitelic segregation. Experimental data have demonstrated a positive correlation between time postovulation and elevated frequencies of PCS in MII oocytes and aneuploidy in one-cell mouse zygotes (Mailhes et al. 1998).

The degree of PCS should be noted when considering the possible chromosome segregation patterns of a primary oocyte with PCS and the probability of aneuploidy. This can range from only the sister chromatids of one dyad to complete separation of all chromatids (Mailhes et al. 2003a). Considering the most elementary situation whereby the sister chromatids of one homologous chromosome separate prematurely and the other homologues segregate normally, three potential events may occur during anaphase I: (1) both of the disjoined sisters may segregate to the secondary oocyte, while the homologue segregates to the first polar body or vice versa; (2) both sisters may segregate along with its homologue to the secondary oocyte; and (3) both sisters may segregate to the first polar body along with its homologue. Thus, following anaphase I, the latter two outcomes would result in aneuploid secondary oocytes. Now, considering the case of a MII oocyte with two single chromatids (PCS of one dyad), three possible outcomes may occur during anaphase II: (1) one sister may segregate to the oocyte pronucleus, while the other goes to the second polar body; (2) both sisters may segregate to the oocyte pronucleus; or (3) both sisters may segregate to the second polar body. Again, the latter two segregation possibilities would result in aneuploidy. A noteworthy finding is that a bipolar spindle is not required for PCS because both chromatid arm and centromere separation can occur in the absence of a spindle (Rieder & Palazzo 1992, Sluder 1979).

The occurrence of PCS is not new. Rodman (1971) noted that postovulatory-aged mouse oocytes had higher frequencies of PCS than freshly ovulated

Figure 3. Possible segregation patterns during meiosis I and II when one homologue undergoes PCS prior to anaphase I.

oocytes. Subsequently, several groups found a positive correlation between postovulatory and in vitro oocyte aging with elevated levels of PCS in human (Angell 1991, 1994, Cupisti *et al.* 2003, Dailey *et al.* 1996, Pellestor *et al.*, 2002, 2003, Rosenbusch 2004), rodent (Mailhes *et al.* 1997b, 1998, Yin *et al.* 1998), and Drosophila oocytes (Jeffreys *et al.* 2003). Also, experimental data have supported a correlation between chemically-induced PCS in MII oocytes and aneuploidy in one-cell mouse zygotes (Mailhes *et al.* 1997b).

The molecular events underlying PCS are receiving considerable attention. The precocious loss of cohesin proteins from sister chromatids and homologues during mitosis and meiosis has been shown to result in PCS (Hoque & Ishikawa 2002, Sonada et al. 2001, Uhlmann 2003a). Mutants of the ord and Mei-S322 Drosophila proteins, which help hold sister chromatids together prior to anaphase, exhibited higher frequencies of PCS and aneuploidy (Kerrebrock et al. 1992, Miyazaki & Orr-Weaver 1992). Also, abnormalities in other proteins involved with chromosome cohesion, such as SMC1 beta in mice (Hodges et al. 2005) and the yeast Pds5 protein (Hartman et al. 2000, Panizza et al. 2000) can alter normal segregation patterns. Recent results with HeLa cells showed that depletion of the microtubule and kinetochore protein astrin resulted in checkpoint arrested cells with PCS

(Thein *et al.* 2007). Although specific proteins have central roles in sister chromatid and homologue cohesion, other compounds also appear to be involved. Both culture media and the follicular fluid-meiosis-activating sterol were reported to affect the incidence of PCS in mouse oocytes in vitro (Cukurcam *et al.* 2003).

In addition to defects in cohesion proteins, PCS and aneuploidy can also result from abnormal SAC protein activity. Deficient Mad2 activity resulted in MPF degradation, APC activation, loss of sister chromatid cohesion, and PCS in both Xenopus oocytes (Peter et al. 2001) and aged mammalian oocytes (O'Neill & Kaufman 1988). Other data indicated that as time postovulation increased in mouse oocytes, the frequencies of PCS and premature anaphase (PA) increased, while the intraoocyte titer of MAD2 transcripts decreased (Steuerwald et al. 2005). Elevated PCS levels was also reported following the exposure of mouse oocytes to propylene glycol (Mailhes et al. 1997b) and tamoxifen (London & Mailhes 2001). Furthermore, when mouse oocytes were exposed to the phosphatase 1 and 2A inhibitor OA prior to metaphase I, complete separation of homologues into 80 chromatids and elevated levels of aneuploidy in MII oocytes were found (Mailhes et al. 2003a). A possible explanation for the elevated levels of PCS found in OAexposed oocytes may involve protein hyperphosphorylation, as noted in hepatocytes (Cohen et al. 1990) and rat oocytes (Zernicka-Goetz & Maro 1993) following OA treatment. During mitosis and meiosis, phosphorylation of cohesins facilitates their removal prior to anaphase onset (Alexandru et al. 2001, Hoque & Ishikawa 2001, Lee & Amon 2003, Losada et al. 2000, Tomonaga et al. 2000, Yu & Koshland 2005). Finally, PP2A is found at yeast centromeres during mitosis and meiosis, and decreased PP2A activity led to loss of centromeric cohesion at anaphase I and random segregation of chromatids during anaphase II (Kitajima et al. 2006, Riedel et al. 2006, Tang et al. 2006).

Postovulatory and In Vitro Oocyte Aging

The broad focus of this review is that postovulatory or in vitro oocyte aging leads to a progressive and functional deterioration of the biochemical and cellular organelles required for accurate chromosome segregation, normal fertilization, and embryonic development (Austin 1967, 1970, Wilcox et al. 1998). Some of these age-related changes may serve as models for studying the numerous potential mechanisms of aneuploidy.

Mature mammalian oocytes remain capable of fertilization for a longer period of time than their time for expressing optimal gamete physiology. The fertilizable lifespan of mammalian oocytes ranges from 12 to 24 h (Hafez 1993). Although the fertilizable average lifespan for both induced-and naturally-ovulated mouse oocytes is approximately 15 h postovulation, their optimal time for fertilization lies between 4 to 6 h postovulation (Edwards & Gates 1959, Lewis & Wright 1935, Marston & Chang 1964). After ovulation, time-dependent intraoocyte changes occur that can lead to apoptosis (Exley et al. 1999, Gordo et al. 2002, Morita & Tilly 1999, Perez et al. 1999) and nuclear fragmentation (Gordo et al. 2002). Also, the time from insemination to fertilization, the rate of pronuclear formation, and the first cleavage division were shorter in postovulatory aged mouse oocytes than in freshly ovulated oocytes (Fraser 1979, Boerjan & de Boer 1990).

Most mammals, excluding humans and induced-ovulators, ovulate during or shortly after the estrus period of their estrous cycle; this facilitates fertilization of freshly ovulated oocytes (Hafez 1993). Since this situation does not occur in humans, a probability exists that postovulatory aged oocytes will be fertilized. Indeed, several groups have proposed that fertilization of postovulatory aged oocytes (delayed fertilization) represents a predisposition to aneuploidy (Blazak 1987, Hecht & Hecht 1987, Juberg 1983, Mailhes 1987, Pellestor 1991, Zenzes & Casper 1992).

Two human epidemiologic studies offered support for an association between delayed fertilization and early embryonic failure (Wilcox et al. 1998) and trisomic offspring (Juberg 1983).

Chemical Alterations in Aged Oocytes

Although freshly-ovulated and postovulatory aged oocytes appear morphologically similar, differences exist among certain cellular organelles and biochemical activities. Some of these dissimilarities resemble those found following fertilization or partheneogenic activation (Tarin et al. 1996, Xu et al. 1997), while others involve alterations to cellular organelles and biochemical events that can affect chromosome segregation.

Mammalian oocytes possess a time- and species-dependent predisposition to spontaneous activation if fertilization does not occur within a limited time following ovulation or in vitro culture. Numerous studies have shown that the incidence of spontaneous oocyte activation in mice begins to increase four hours postovulation (Homa et al. 1993, Kaufman 1983, Kubiak 1989, Moses & Masui 1994, Nagai 1987, Whittingham & Siracusa 1978, Winston et al. 1991, Yanagimachi & Chang 1961). Aged oocytes also had lower ATP levels at fertilization (Igrashi et al. 2005), higher sensitivities to: oxidative stress (Boerian & de-Boer 1990, Takahashi et al. 2003, Tarin et al. 1996), calcium ionophores (Fulton & Whittingham 1978, McConnell et al. 1995, Vincent et al. 1992), partheneogenetic activation following chemical or mechanical stimuli (Cutherbertson & Cubbold 1985. Kaufman 1983, Kline & Kline 1992, Kubiak 1989, Nagai 1987), and spontaneous calcium release (Beatrice et al. 1984, Orrenius et al. 1992, Tombes et al. 1992). The higher titers of calcium found in aged oocytes were proposed to inhibit both tubulin polymerization and the depolymerization of existing microtubules (Kosower & Kosower 1978).

Relative to fresh oocytes, aged oocytes displayed higher calmodulin-dependent protein kinase II activities, but lower activities of MPF and MAPKs (Lorca et al. 1993, Moos et al. 1995, Verlhac et al. 1994). The diminished MPF activity (resulting from phosphorylation and conversion to pre-MPF) in aged porcine (Kikuchi et al. 1995, 2000) and bovine oocytes (Liu et al. 1998) and of MAPKs in both aged mouse (Xu et al. 1997) and porcine oocytes in vitro (Ma et al. 2005) were proposed to lead to spontaneous activation, abnormal chromosome segregation, and apoptosis. Furthermore, it was shown that the levels of active and inactive MPF could be regulated by exposing porcine oocytes to certain phosphatase and kinase inhibitors (Kikuchi et al. 2000). Such exogenous manipulation of phosphorylation-dephosphorylation events appear to offer another venue for investigating the events associated with oocyte aging and chromosome segregation. Additionally, both MPF and MAPK titers were reported to decrease more rapidly in oocytes cultured from biologically aged mice than those from young mice (Tatone et al. 2006).

Differences in kinase and phosphatase activities, protein synthesis, and maternal mRNA recruitment were also noted between fresh and aged bovine oocytes (Liu et al. 1998). Mos kinase (the product of the c-mos protooncogene) is needed for stabilizing MPF during the MII arrest of mouse oocytes (Gabrielli et al. 1993, Sagata 1996, 1997) and for microtubule spindle assembly (Sagata 1996, Wang et al. 1994, Zhao et al. 1991), and in vitro aging of bovine oocytes was shown to reduce the activity of Mos kinase (Wu et al. 1997).

When immature porcine oocytes were cultured for 40 to 72h in vitro, the levels of tubulin and the centromere protein B (CENP-B) remain unchanged as oocytes aged; whereas, the expressions of the Mad2 spindle checkpoint protein, the BCL2 antiapoptotic protein, and the mitogen-activated protein kinase (MAPK) decreased as culture time increased. Also, the proportions of oocytes with abnormal spindles and chromosomes increased with oocyte aging (Ma et al. 2005). Other data have shown that postovulatory aging of mouse oocytes resulted in a time-dependent reduction in the number of Mad2 transcripts and a concomitant elevation in the frequencies of PCS and PA (Steuerwald et al. 2005). A recent report utilized bisulfite sequencing and COBRA methods to evaluate the DNA methylation status of differentially methylated regions (DMRs) of two maternally imprinted genes – Snrpn and Peg1/Mest. Mouse oocytes aged in vivo for 29 h post-hCG exhibited demethylation of Snrpn DMRs. However, no change in the methylation status of Peg1/Mest was found at 29 h (Liang et al. 2008).

Histone deacetylase inhibitors are powerful anti-proliferative compounds undergoing clinical studies as antitumor drugs. Enhanced acetylation of lysines on histone H3 and H4 occurs during postovulatory oocyte aging, and the histone deacetylase inhibitor trichostatin A (TSA) can accelerate the rate of in vivo aging in mouse oocytes (Huang et al. 2007). Also, mouse oocytes cultured in the presence of TSA exhibited elevated levels of aneuploidy and early embryonic death (Akiyama et al. 2006). Another study found that exposure of HeLa cells to TSA led to loss of the Mad2 SAC protein from kinetochores and elevated levels of PCS (Magnaghi-Jaulin et al. 2007).

Cytologic and Cytogenetic Alterations in Aged **Oocytes**

Numerous cytologic and cytogenetic alterations have been described in aged mammalian oocytes. Relative to freshly ovulated oocytes, aged oocytes displayed alterations in cortical granule exocytosis and the zona pellucida (Cascio & Wassarman 1982, Diaz & Esponda 2004, Gianfortoni & Gulyas 1985, Howlett 1986, Longo 1981, Szollosi 1975, Xu et al. 1997, Yanagimachi & Chang 1961) and elevated levels of cytoplasmic asters and spindle anomalies (Eichenlaub-Ritter et al. 1986, 1988, George et al. 1996, Kim et al. 1996. Pickering et al. 1988. Segers et al. 2008). Furthermore, aged oocytes displayed higher frequencies of premature extrusion of the second polar body and apoptosis (Fissore et al. 2002, Gordo et al. 2000).

When exogenous calcium was added to Xenopus egg extracts, elevated frequencies of PCS and PA were detected (Shamu & Murray 1992). Others proposed that an excess of intracellular calcium, as found in aged oocytes, triggers a cascade of events resulting in PCS, PA, and chromosome missegregation (Fissore et al. 2002, Gordo et al. 2000, Tarin et al. 1996). Both PCS and PA have been proposed to represent cytogenetic manifestations of spontaneous activation in aged oocytes (Mailhes et al. 1997a, 1998). Aged oocytes displayed higher frequencies of chromosome displacement from the metaphase plate (Saito et al. 1993, Webb et al. 1986), and the levels of PCS and PA were higher in postovulatory and in vitro aged mammalian oocytes (Angell 1991, Cupisti et al. 2003, Dailey et al. 1996, Mailhes et al. 1997b, 1998, Pellestor et al. 2002, 2003, Rosenbusch 2004, Yin et al. 1998). Fertilization of aged oocytes was correlated with higher frequencies of fragmented female pronuclei (Fissore et al. 2002, Kikuchi et al. 2000, Szollosi 1971), decreased fertilization rates (Smith & Lodge 1987, Wolf et al. 1996), and embryonic viability (Ekins & Shaver 1975, Sakai & Endo 1988, Wilcox et al. 1998). Also, the frequencies of polyploidy (Austin 1967, Ishikawa & Endo 1995, Juetten & Bavister 1983, Shaver & Carr 1967, Vickers 1969) and aneuploidy (Mailhes et al. 1998, Plachot et al. 1988, Rodman 1971, Sakurada et al. 1996, Yamamoto & Ingalls 1972) were higher following delayed fertilization of mammalian oocytes.

Although most studies found a positive correlation between postovulatory aged oocytes and cytological and cytogenetic abnormalities, two studies reported that aneuploidy was not elevated in aged oocytes. Although an increase in aneuploidy was not detected when mouse oocytes were aged in vivo for 0 -14 hrs prior to in vitro fertilization, only 1 and 2 zygotes were analyzed from the 14 and 10 hr aged groups, respectively (Zackowski & Martin-Deleon 1988). Another study involving in vivo aging of mouse oocytes and cytogenetic analysis of single pronuclear haploid partheneogenones reported no association between oocyte ageing and aneuploidy (O'Neill & Kaufman 1988). However, these findings may be compromised by the difficulty of distinguishing between MII oocyte chromosomes and partheneogenome chromosomes as well as that between a first and a second polar body. It is noted that analysis of MII chromosomes cannot detect aneuploidy in postovulatory aged oocytes because an intervening cell division is needed between the induction and expression of aneuploidy.

When the developmental potential of a limited number of aged, failed-to-fertilize human oocytes were compared with fresh, ovulation-induced oocytes, higher levels of aneuploidy, aberrant spindles, and cleavage failure were noted in the aged oocytes (Hall et al. 2007). Also, human embryos resulting from in vitro maturation and delayed intracytoplasmic sperm injection exhibited higher levels of aneuploidy when compared with control embryos (Emery et al. 2005).

Conclusion

At each stage of mitosis and meiosis, the correct order and temporal interaction among various chemical reactions and cellular organelles are needed to preserve genomic integrity. Considerable experimental data and human epidemiological studies have shown that the probability of successful chromosome segregation and zygotic development are compromised when oocytes undergo in vivo or in vitro aging prior to fertilization. These biochemical and cytological changes reported in aged oocytes offer unique models for studying some of the numerous molecular aspects of aneuploidy.

Several innovative technologies have been used to study the molecular aspects of mitosis and meiosis. High-density oligonucleotide microarrays and PCR microarrays (Schlecht & Primig 2003) can be used to identified loci that regulate the cell cycle in eukaryotes, including mice and humans. Also, doublestrand RNA-mediated post-transcriptional gene silencing (RNA interference) offers promise for investigating the pathways controlling cell cycle progression and chromosome segregation (Bettencourt-Dias et al. 2004, Prawitt et al. 2004). RNA silencing/knockdown has been used to alter the expression of Mos mRNA (Stein et al. 2003) and Mad2 (Homer et al. 2005a) in order to study the role of genes involved with oocyte maturation and chromosome segregation in mouse oocytes. When employing RNA interference technologies, the possibility of off-target effects and the efficiency of gene silencing should be considered. Gene knockout strategies for genes upregulated during yeast meiosis showed that deletion of specific genes required for maintaining centromeric cohesion during anaphase I resulted in chromosome missegregation (Gregan et al. 2005, Marston et al. 2004). Furthermore, genomic and proteomic analyses have the ability to expand our knowledge about gene expression. Analyses of cancer cells showed that a subset of genes are universally activated in most cancers (Rhodes et al. 2004), and that overexpression of cell division regulatory genes were linked with chromosome aberrations and neoplastic progression (Rajagopalan & Lengauer 2004). Finally, the use of unique chemical inhibitors that block a specific pathway during chromosome segregation are helping to advance our knowledge about aneuploidy (Dorer et al. 2005, Mailhes et al. 2003a, 2004).

The present and future challenge will be to understand the complex molecular mechanisms of aneuploidy and genomic instability and to apply such knowledge to reducing the incidence of human genetic disease and cancer.

References

Adams RR, Maiato H, Earnshaw WC & Carmena M. 2001a. Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 153 865-880

Adams RR, Eckley DM, Vagnarelli P, Wheatley SP, Gerloff DL, Mackay AM, Svingen PA, Kaufman SH & Earnshaw WC 2001b Human INCENP colocalizes with the Aurora-B/AIRK kinase on chromosomes and is overexpressed in tumor cells. Chromosoma 110 65-

Adler I-D 1990 Aneuploidy studies in mammals. In Mendelsohn ML, Albertini RJ, editors. Mutation and the Environment, Part B: Metabolism, Testing Methods, and Chromosomes, New York: Wiley-Liss, p 285-293

Adler I-D 1993 Synopsis of the in vivo results obtained with the 10 known or suspected aneugens tested in the CEC collaborative study. Mutat Res 287 131-137

Adler I-D, Schmid TE & Baumgartner A 2002 Induction of aneuploidy in male mouse germ cells detected by the sperm-FISH assay: a review of the present data base. Mutat Res 504 173-182

Agarwal R & Cohen-Fix O 2002 Mitotic regulation: the fine tuning of separase activity. Cell Cycle 1 255-257 Ahonen LJ, Kallio MJ, Daum JR, Bolton M, Manke IA, Yaffe MB, Stukenberg PT & Gorbsky GJ 2005

Polo-like kinase 1 creates the tension-sensing 3F3/2 phosphoepitope and modulates the association of spindle-checkpoint proteins at kinetochores. Curr Biol 15 1078-1089

Akiyama T, Nagata M & Aoki F 2006 Inadequate histone deactylation during oocyte meiosis causes aneuploidy and embryo death in mice. Proc Natl Acad Sci USA 103 7339-7344

Allen JW, Liang JC, Carrano AV & Preston RJ 1986 Review of literature on chemical-induced aneuploidy in mammalian male germ cells. Mutat Res 167 123-

Alexandru G, Uhlmann F, Mechtler K, Poupart MA & Nasmyth K 2001 Phosphorylation of the cohesion subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105 459-472

Amor DJ, Kalitsis P, Sumer H & Choo KH 2004 Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol 14 359-368

Anahory T, Andreo B, Regnier-Vigourouox G, Souile JP, Baudouin M, Demaille J & Pellestor F 2003 Sequential multiple probe fluorescence in-situ hybridization analysis of human oocytes and polar bodies by combining centromeric labeling and whole chromosome painting. Mol Hum Report 9 577-585

Anderiesz C, Ferraretti A, Magli C, Fiorentino A, Fortini D, Gianaroli L, Jones GM & Trounson AO 2000 Effect of recombinant human gonadotrophins on human, bovine and marine oocyte meiosis. Hum Report 15 1140 -1148

Andreassen PR, Martina SN & Margolis RL 1996 Chemical induction of mitotic checkpoint override in mammalian cells results in aneuploidy following a transient metalloid state. Mutat Res 372 181-194

Angell RR 1991 Predivision in human oocytes at meiosis I: a mechanism for trisomy formation in man. Hum Genet **86** 383-387

Angell RR 1994 Aneuploidy in older women; higher rates of aneuploidy in oocytes from older women. Hum Report 9 1199-1201

Angell RR, Xian J, Keith J, Ledger W & Baird DT 1994 First meiotic division abnormalities in human oocytes: mechanism of trisomy formation. Cytogenet Cell Genet **65** 194-202

Arion D, Meier L, Brizuela L & Beach D 1988 Cdc2 is a component of the M phase-specific histone H1 kinase: evidence for identity with MPF. Cell 55 371-378

Austin CR 1967 Chromosome deterioration in aging eggs of the rabbit. *Nature* **213** 1018-1019

Austin CR 1970 Ageing and reproduction: postovulatory deterioration of the egg. J Reprod Fert Suppl **12** 39-53

Baker DJ, Jeganathan KB, Cameron JD, Thompson M,

Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P & van Deursen JM 2004 BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet **36** 744-749

Barnes FL, Collas P, Powell R, King WA, Westhusin M & Shepherd D 1993 Influence of recipient oocyte cell cycle stage on DNA synthesis, nuclear envelope breakdown, chromosome constitution, and development in nuclear transplant bovine embryos. Mol Rep Dev 36 33-

Baudat F, Manova K, Yuen JP, Jasin M & Keeney S 2000 Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell 6 989-998

Beatrice MC, Stiers DL & Pfeiffer DR 1984 The role of glutathione in the retention of Ca²⁺ by liver mitochondria. J Biol Chem 259 1279-1287

Bernard P, Maure JF & Javerzat JP 2001 Fission yeast Bub1 is essential in setting up the meiotic pattern of chromosome segregation. Nat Cell Biol 3 522-526

Bettencourt-Dias M, Giet R, Sinka R, Mazumdar A, Lock WG, Balloux PJ, Safiropoulos PJ, Yamaguchi S, Winter S, Carthew RW, Cooper M, Jones D, Frenz L & Glover DM 2004 Genome-wide survey of protein kinases required for cell cycle progression. Nature 432 980-987

Bharadwal R & Yu H 2004 The spindle checkpoint, aneuploidy, and cancer. Oncogene 23 2016-2027

Biggins S & Walczak CE 2003 Captivating capture: how microtubules attach to kinetochores. Curr Biol 13 R449-R460

Blazak WF 1987 Incidence of aneuploidy in farm animals. In Vig BK, Sandberg AA, editors. Aneuploidy, Part A: Incidence and Etiology. New York: Alan R. Liss. p.103-116

Boerjan ML & deBoer P 1990 First cell cycle of zygotes of the mouse derived from oocytes aged postovulation in vivo and fertilized in vivo. Mol Rep Dev 25 155-163

Boernslaeger EA, Mattei P & Schultz RM 1986 Involvement of cAMP-dependent protein kinase and protein phosphorylation in regulation of mouse oocyte maturation. Dev Biol 114 453-462

Bolton MA, Lan W, Powers SE, McCleland ML, Kuang J & Stukenberg PT 2002 Aurora B kinase exists in a complex with survivin and INCENP and its kinase activity is stimulated by survivin binding and phosphorylation. Mol Biol Cell 13 3064-3077

Bond DJ & Chandley AC 1983 Aneuploidy, Oxford Monographs on Medical Genetics, No. 11, Oxford: Oxford University Press, p 1-198

Brunet S, Pahlavan G, Taylor S & Maro B 2003 Functionality of the spindle checkpoint during the first meiotic division of mammalian oocytes. Reproduction 126 443-450

Buonomo SB, Clyne RK, Fuchs J, Loidl J, Uhlmann F & Nasmyth K 2000 Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesion Rec8 by separin. Cell 103 387-

Carvalho A, Carmena M, Sambade C, Earnshaw WC & Wheatley SP 2003 Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J Cell Sci 116 2987-2998

Cascio SM & Wassarman PM 1982 Program of early development in the mammal: post-transcriptional control of a class of proteins synthesized by mouse oocytes and early embryos. Dev Biol 89 397-408

Champoux JJ 2001 DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70 369-413

Chandley AC 1987 Aneuploidy: an overview, In Vig BK, Sandberg AA, editors. Aneuploidy: Part A: Incidence and Etiology. New York: Alan R. Liss. p 1-8

Chen RH, Shevehenko A, Mann M & Murray AW 1998 Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J Cell Biol 143 283-295

Choi T, Aoki F, Mori M, Yamashita M, Nagahama Y & Kohmoto K 1991 Activation of p34^{cdc2} protein kinase activity in meiotic and mitotic cell cycles in mouse oocytes and embryos. Development 113 789-

Chung E & Chen RH 2002 Spindle checkpoint requires Mad1-bound and Mad1-free Mad2. Mol Biol Cell 13 1501-1511

Cimini D 2007 Detection and correction of merotelic kinetochore orientation by Aurora B, its partners. Cell Cycle 6 1558-1564

Cimini D 2008 Merotelic kinetochore orientation, aneuploidy, and cancer. Biochem **Biophys** doi:10.1016/j.bbcan.2008.05.003

Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Shevchenko A & Nasmyth K 2000 Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 4 243-254

Clarke AS, Tang TT, Ooi DL & Orr-Weaver TL 2005 POLO kinase regulates the Drosophila centromere cohesion protein MEI-S332. Dev Cell 8 53-64

Clyne RK, Katis VL, Jessop L, Benjamin KR, Herskowitz I, Lichten M & Nasmyth K 2003 Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister chromatids at meiosis I. Nat Cell Biol 5 379-382

Cobb J, Reddy RK, Park C & Handel MA 1997 Analysis of expression and function of topoisomerase I and II during meiosis in male mice. Mol Rep Dev 46 489-498

Cohen P, Holmes CF & Tsukitani Y 1990 Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci 15 98-102

Cohen-Fix O, Peters JM, Kirschner MW & Koshland D 1996 Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev 10 3081-3093

Collas P, Sullivan EJ & Barnes FL 1993 Histone H1 kinase activity in bovine oocytes following calcium stimulation. Mol Rep Dev 34 224-231

Colledge WH, Carlton MBL, Udy GB & Evans MJ 1994. Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs. Nature 370 65-

Collins J & Crosignani PG 2005 Fertility and ageing. Hum Reprod Update 11 261-276

Coulam CB, Jeyendran RS, Fiddler M & Pergament E 2007. Discordance among blastomeres renders preimplantation genetic diagnosis for an euploidy ineffective. J Assist Reprod Genet 24 37-41

Coux O, Tanaka K & Goldberg AL 1996 Structure and function of the 20S and 26S proteasomes. Annu Rev Biochem 65 801-847

Craig JM, Earnshaw WC & Vagnarelli P 1999 Mammalian centromeres: DNA sequence, protein composition, and role in cell cycle progression. Exptl Cell Res 246 249-262

Craig JM & Choo KHA 2005 Kiss and break up – a safe passage to anaphase in mitosis and meiosis. Chromosoma 114 252-262

Cukurcam S, Hegele-Hartung C & Eichenlaub-Ritter U 2003 Meiosis-activating sterol protects oocytes from precocious chromosome segregation. Hum Reprod 18 1908-1917

Cupisti S, Conn CM, Fragouli E, Whalley K, Mills JA, Faed MJ & Delhanty JD 2003 Sequential FISH analysis of oocytes and polar bodies reveals aneuploidy mechanisms. Prenat Diagn 23 663-668

Cuthbertson KSR & Cubbbold PH 1985 Phorbol ester and sperm activate mouse oocytes by inducing sustained oscillations in cell Ca²⁺. *Nature* **316** 541-542

Dai Y, Fulka Jr. J & Moor R 2003a Checkpoint controls in mammalian oocytes. In Trounson AO, Gosden RG, editors. Biology and Pathology of the Oocyte. Cambridge UK: Cambridge University Press. p 120-

Dai W, Huang X & Ruan Q 2003b Polo-like kinases in cell cycle checkpoint control. Frontiers Biosci 8 1128-1133

Dai W, Wang Q, Liu TY, Swamy M, Fang YQ, Xie SQ, Mahmood R, Yang YM, Xu M & Rao CV 2004 Slippage of mitotic arrest and enhanced tumor development in mice with BUBR1 haploinsufficiency. Cancer Res 15 440-445

Dailey T, Dale B, Cohen J & Nunné S 1996 Association between nondisjunction and maternal age in meiosis II oocytes. Am J Hum Genet 59 176-184

Dekel N 1988 Regulation of oocyte maturation: the role of cAMP. Ann NY Acad Sci 541 211-216

1996 Dekel Protein phosphorylationdephosphorylation in the meiotic cell cycle of mammalian oocytes. Rev Reprod 1 82-88

Dekel N 2005 Cellular, biochemical and molecular mechanisms regulating oocyte maturation. Mol Cell Endocrinol **234** 19-25

De Pennart H, Helene-Verlhac M, Cibert C, Santa Maria A & Maro B 1993 Okadaic acid induces spindle lengthening and disrupts the interaction microtubules with the kinetochores in metaphase IIarrested mouse oocytes. Dev Biol 157 170-181

Dewar H, Tanaka K, Nasmyth K & Tanaka TU 2004 Tension between two kinetochores suffices for their biorientation on the mitotic spindle. Nature 428 93-97

Diaz H & Esponda P 2004 Postovulatory ageing induces structural changes in the mouse zona pellucida. JSubmicrosc Cytol Pathol 36 211-217

Dinardo S, Voelkel KA & Sternglanz RL 1984 DNA topoisomerase mutant of S. cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc Natl Acad Sci USA 81 2616-2620

Ditchfield C, Johnson VL, Tighe A, Ellston R, Haworth C, Johnson T, Mortlock A, Keen N & Taylor SS 2003 Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161 267-280

Dobles M, Liberal V, Scott ML, Benezra R & Sorger PK 2000 Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell **101** 635-645

Dorée M, Le Peuch C & Morin N 1995 Onset of chromosome segregation at the metaphase to anaphase transition of the cell cycle. Prog Cell Cycle Res 1 309-318

Dorer RK, Zhong S, Tallarico JA, Wong WH, Mitchison TJ & Murray AW 2005 A small-molecule inhibitor of Mps1 blocks the spindle-checkpoint response to a lack of tension on mitotic chromosomes. Curr Biol 15 1070-1076

Downes CS, Mullinger AM & Johnson RT 1991 Inhibitors of DNA topoisomerase II prevent chromatid separation in mammalian cells but do not prevent exit from mitosis. Proc Natl Acad Sci USA 88 8895-8899

Downs SM, Daniel SAJ, Bornslaeger EA, Hoppe PC & Eppig JJ 1989 Maintenance of meiotic arrest in mouse oocytes by purines: modulation of cAMP levels and cAMP phosphodiesterase activity. Gamete Res 23 323-334

Draetta G & Beach D 1988 Activation of cdc2 protein kinase during mitosis in human cells: Cell cycle dependent phosphorylation and subunit rearrangement. Cell **54** 17-26

Duesbery NS, Choi T, Brown KD, Wood KW, Resau J, Fukasawa K, Cleveland DW & Vande-Woude GF 1997 CENP-E is an essential kinetochore motor in maturing oocytes and is masked during mos-dependent. cell cycle arrest at metaphase II. Proc Natl Acad Sci USA 94 9165-9170

Dunphy WG & Kumagai A 1991 The cdc25 protein contains an intrinsic phosphatase activity. Cell 67 189-

Earnshaw WC & Cooke CA 1991 Analysis of the distribution of the INCENPs throughout mitosis reveals the existence of a pathway of structural changes in the chromosomes during metaphase and early events in cleavage furrow formation. J Cell Sci 98 443-461

Eastmond DA, Schuler M & Rupa DS 1995 Advantages and limitations of using fluorescence in situ hybridization for the detection of aneuploidy in interphase human cells. Mutat Res 348 153-162

Edwards RG & Gates AH 1959 Timing of the stages of the maturation divisions, ovulation, fertilization and the first cleavage of eggs of adult mice treated with gonadotrophins. J Endocrin 18 292-304

Eichenlaub-Ritter U 1993 Studies on maternal agerelated aneuploidy in mammalian oocytes and cell cycle control. In Sumner AT, Chandley AC, editors. Chromosomes Today, Vol. 11. London: Chapman & Hall. p 323-

Eichenlaub-Ritter U 1996 Parental age-related aneuploidy in human germ cells and offspring: a story of past and present. Environ Mol Mutagen 28 211-236

Eichenlaub-Ritter U, Chandley AC & Gosden RG 1986 Alterations to the microtubular cytoskeleton and increased disorder of chromosome alignment in spontaneously ovulated mouse oocytes in vivo: an immunofluorescence study. Chromosoma 94 337-345

Eichenlaub-Ritter U, Stahl A & Luciani JM 1988 The microtubular cytoskeleton and chromosomes of unfertilized human oocyte aged in vitro. Hum Genet 80 259-264 Eichenlaub-Ritter U, Baart E, Yin H & Betzendahl I 1996 Mechanisms of spontaneous and chemicallyinduced aneuploidy in mammalian oogenesis: basis of sex-specific differences in response to aneugens and the necessity for further tests. Mutat Res 372 279-294

Eichenlaub-Ritter U 2003 Aneuploidy in aging oocytes and after toxic insult. In Trounson A, Gosden RG, editors. Biology and pathology of the oocyte; its role in fertility and reproductive medicine. Cambridge, UK: Cambridge University Press. p 220-257

Eijpe M, Heyting C, Gross B & Jessberger R 2000 Association of mammalian SMC1 and SMC3 proteins with meiotic chromosomes and synaptonemal complexes. J Cell Sci 113 673-682

Eijpe M, Offenberg H, Jessberger R, Revenkova E & Heyting C 2003 Meiotic cohesion REC8 marks the axial elements of rat synaptonemal complexes before cohesions SMC1β and SMC3. *J Cell Biol* **160** 657-670

Ekins JG & Shaver EL 1975 Cytogenetics of postimplantation rabbit conceptuses following delayed fertilization. Teratology 13 57-64

Emery BR, Wilcox AL, Aoki VW, Peterson CM & Carrell DT 2005 In vitro oocyte maturation and subsequent delayed fertilization is associated with increased embryo aneuploidy. Fertil Steril 84 1027-1029

Exley GE, Tang C, McElhinny AS & Warner CM 1999 Expression of caspase and BCL-2 apoptotic family members in mouse preimplantation embryos. Biol Rep 61 231-239

Fan HY & Sun QY 2004 Involvement of mitogenactivated protein kinase cascade during oocyte maturation and fertilization in mammals. Biol Rep 70 535-547 Fang G 2002 Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell 13 755-766

Fissore RA, Kurokawa M, Knott J, Zhang M & Smyth J 2002 Mechanisms underlying oocyte activation and postovulatory aging. Reproduction 124 745-754

Ford JH 1981 Nondisjunction. In Burgio GR, Fraccaro M, Tiepolo L, Wolf U, editor. Trisomy 21. Berlin: Springer. p 103-143

Fragouli E, Wells D, Doshi A, Gotts S, Harper JC & Delhanty JD 2006 Complete cytogenetic investigation of oocytes from a young cancer patient with the use of comparative genomic hybridization reveals meiotic errors. Prenat Diagn 26 71-76

Fraser LR 1979 Rate of fertilization in vitro and subsequent nuclear development as a function of the postovulatory age of the mouse egg. J Rep Fertil 55 153-160 Fulka Jr. J, Jung T & Moor RM 1992 The fall of biological maturation promoting factor (MPF) and histone H1 kinase activity during anaphase and telophase in mouse oocytes. Mol Rep Dev 32 378-382

Fulton BP & Whittingham DG 1978 Activation of mammalian oocytes by intracellular injection of calcium. Nature **273** 149-151

Gabrielli BG, Roy LM & Maller JL 1993 Requirement for cdk2 in cytostatic factor-mediated metaphase II arrest. Science 259 1766-1769

Gautier J, Solomon MJ, Booher RN, Bazan JF & Kirschner ME 1991 cdc25 is a specific tyrosine phosphatase that directly activates p34^{cdc2}. *Cell* **67** 197-211 Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K & Daley GQ 2004 Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature **427** 148-154

George MA, Pickering SJ, Braude PR & Johnson MH 1996 The distribution of α - and λ tubulin in fresh and aged human and mouse oocytes exposed to cryoprotectant. *Mol Hum Rep* **6** 445-456

Gianfortoni JG & Gulyas BJ 1985 The effects of shortterm incubation (aging) of mouse oocytes on in vitro fertilization, zona solubility, and embryonic development. Gamete Res 11 59-68

Giet R, Petretti C & Prignet C 2005 Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol 15 241-250

Glickman MH & Ciechanover A 2002 The ubiquitinproteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82 373-428

Glover DM, Ohkura H & Tavares A 1998 Polo-like kinases: a team that plays throughout mitosis. Genes Dev 12 3777-3787

Goldberg AL 1995 Functions of the proteasome: the lysis at the end of the tunnel. Science 268 522-523

Goldstein LS 1980 Mechanisms of chromosome orientation revealed by two meiotic mutants in Drosophila melanogaster. Chromosoma 78 79-111

Gorbsky GJ 1994 Cell cycle progression and chromosome segregation in mammalian cells cultured in the presence of the topoisomerase II inhibitors ICRF-187 [(+)-1,2-bis(3,5-dioxopiperazinyl-1-yl) propane; ADR-529] and ICRF-159 (Razoxane). Cancer Res 54 1042-1048

Gordo AC, Wu H, He CL & Fissore RA 2000 Injection of sperm cytosolic factor into mouse metaphase II oocyte induces different development fates according to the frequency of [Ca²⁺] oscillations and oocyte age. Biol Reprod 62 1370-1379

Gordo A, He CL, Smith S & Fissore RA 2001 Mitogenactivated protein kinase plays a significant role in metaphase II arrest, spindle morphology and maintenance of maturation promoting factor activity in bovine oocytes. Mol Rep Dev 59 106-114

Gordo AC, Rodrigues P, Kurokawa M, Jellerette T, Exley GE, Warner C & Fissore R 2002 Intracellular calcium oscillations signal apoptosis rather than activation in in vitro aged mouse eggs. Biol Reprod 66 1828-1837

Goto H, Kiyono T, Tomono Y, Kawajiri A, Urano T, Furukawa K, Nigg EA & Inagaki M 2006 Complex formation of Plk1 and INCENP required for metaphaseanaphase transition. Nat Cell Biol 8 180-187

Goulding SE & Earnshaw WC 2005 Shugoshin: a centromeric guardian senses tension. Bioessays 27 588-591 Gregan J, Rabitsch PK, Sakem B, Csutak O, Latypov V, Lehmann E, Kohli J & Nasmyth K 2005 Novel genes required for meiotic chromosome segregation are identified by a high-throughput knockout screen in fission veast. Curr Biol 15 1663-1669

Haering CH, Lowe J, Hochwagen A & Nasmyth K 2002

Molecular architecture of SMC proteins and the yeast cohesion complex. Mol Cell 9 773-788

Haering CH & Nasmyth K 2003 Building and breaking bridges between sister chromatids. BioEssays 25 1178-1191

Hafez ESE 1993 Reproduction in Farm Animals. 6th edn. Philadelphia: Lea & Febiger. p 144-164

Hagstrom KA, Holmes VF, Cozzarelli NR & Meyer BJ 2002 C. elegans condensing promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis. Genes Dev 16 729

Hagting A, den Elzen N, Vodermaier HC, Waizenegger IC, Peters J-M & Pines J 2002 Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J Cell Biol 157 1125-1137

Hall VJ, Compton D, Stojkovic P, Nesbitt M, Herbert M, Murdoch A & Stojkovic M 2007 Developmental competence of human in vitro aged oocytes as host cells for nuclear transfer. Hum Reprod 22 52-62

Handel MA, Cobb J & Eaker S 1999 What are the spermatocyte's requirements for successful meiotic division? J Exp Zool 285 243-250

Handel MA & Sun F 2005 Regulation of meiotic cell divisions and determination of gamete quality: impact of reproductive toxins. Semin Reprod Med 23 213-221

Hanks S, Coleman K, Reid S, Plaja A, Firth H, Fitzpatrick D, Kidd A, Mehes K, Nash R, Robin N, Shannon N, Tolmie J, Swansbury J, Itthum A, Douglas J & Rahman N 2004 Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Gen 36 1159-1161

Hansmann I 1983 Factors and mechanisms involved in nondisjunction and X-chromosome loss. In Sandberg AA, editor. Cytogenetics of the Mammalian X Chromosome, Part A: Progress and Topics in Cytogenetics, Vol. 3A. New York: Alan R. Liss. p 131-170

Hansmann I & Pabst B 1992 Nondisjunction by failures in the molecular control of oocyte maturation. Ann Anat 174 485-490

Hartman T, Stead K, Koshland D & Guacci V 2000 Pds5 is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J Cell Biol 151 613-626

Hashimoto N, Watanabe N, Furuta Y, Tamemoto H, Sagata N, Yokovama M, Okazaki K, Nagayoshi M, Takeda N, Ikawa Y & Aizawa S 1994 Parthenogenetic activation of oocytes in c-mos deficient mice. Nature 370 68 -71

Hashimoto N 1996 Role of c-mos proto-oncogene product in the regulation of mouse oocyte maturation. Horm Res 46 11-14

Hassold T, Chiu D & Yamane JA 1984 Parental origin

of autosomal trisomies. Ann Human Genet 48 129-144 Hassold TJ 1985 The origin of aneuploidy in humans. In Dellarco VL, Voytek PE, Hollaender A, editors. Aneuploidy: Etiology and Mechanisms. New York: Plenum Press. p 103-115

Hassold T & Sherman S 1993 The origin of nondisjunction in humans. In Sumner AT, Chandley AC, editors. Chromosomes Today. London, UK: Chapman and Hall. p 313-322

Hassold T & Hunt PA 2001 To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet **2** 280-291

Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, van Meel J, Rieder CL & Peters JM 2003 The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161 281-294

Hauf S, Roitinger E, Koch B, Dittrich CM, Mechtler K & Peters JM 2005 Dissociation of cohesion during early mitosis depends on phosphorylation of SA2. PloS Biol 3 0419-0432

Hecht F & Hecht BK 1987 Aneuploidy in humans: dimensions, demography, and dangers of abnormal numbers of chromosomes. In Vig BK, Sandberg AA, editors. Aneuploidy, Part A: Incidence and Etiology. New York: Alan R. Liss. p 9-49

Herbert M, Levasseur M, Homer H, Yallop K, Murdoch A & McDougall A 2003 Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B. Nat Cell Biol 5 1023-1025

Hiller SG 2001 Gonadotropic control of ovarian follicular growth and development. Mol Cell Endocrinol **179** 39-46

Hodges CA, LeMaire-Adkins R & Hunt PA 2001 Coordinating the segregation of sister chromatids during the first meiotic division: evidence for sexual dimorphism. J Cell Sci 114 2417-2426

Hodges CA, Revenkova E, Jessberger R, Hassold T & Hunt PA 2005 SMC1β-deficient female mice provide evidence that cohesions are a missing link in agerelated nondisjunction. Nat Genet 37 1351-1355

Holm C, Stearns T & Botstein D 1989 DNA topoisomerase II must act at mitosis to prevent nondisjunction and chromosome breakage. Mol Cell Biol 9 159-168

Homa ST, Carroll J & Swann K 1993 The role of calcium in mammalian oocyte maturation and egg activation. Hum Reprod 8 1274-1281

Homer HA, McDougall A, Levasseur M, Yallop K, Murdoch AP & Herbert M 2005a. Mad2 prevents aneuploidy and premature proteolysis of cyclin B and securing during meiosis I in mouse oocytes. Genes Dev **19** 202-207

Homer HA, McDougall A, Levasseur M, Murdoch AP

& Herbert M 2005b RNA interference in meiosis I human oocytes: towards and understanding of human aneuploidy. Mol Hum Rep 11 397-404

Hook EB 1985a The impact of aneuploidy upon public health: mortality and morbidity associated with human chromosome abnormalities. In Dellarco VL, Voytek PE, Hollaender A, editors. Aneuploidy: Etiology and Mechanisms. New York: Plenum Press. p 7-33

Hook EB 1985b Maternal age, paternal age, and human chromosome abnormality: nature, magnitude, etiology, and mechanisms of effects, In Dellarco VL, Voytek PE, Hollaender A, editors. Aneuploidy: Etiology and Mechanisms, New York: Plenum Press. p 117-132

Hoque MT & Ishikawa F 2001 Human chromatid cohesion component hRad21 is phosphorylated in M phase and associated with metaphase chromosomes. J Biol Chem 276 5059-5067

Hoque MT & Ishikawa F 2002 Cohesin defects lead to premature sister chromatid separation, kinetochore dysfunction, and spindle-assembly checkpoint activation. J Biol Chem 277 42306-42314

Howell BJ, Moree B, Farrar EM, Stewart S, Fang G & Salmon ED 2004 Spindle checkpoint protein dynamics at kinetochores in living cells. Curr Biol 14 953-964

Howlett SK 1986 A set of proteins showing cell cycle dependent modification in the early mouse embryo. Cell **45** 387-396

Huang JC, Yan LY, Lei ZL, Miao YL, Shi LH, Yang JW, Wang Q, Ouyang YC, Sun QY & Chen DY 2007 Changes in histone acetylation during postovulatory aging of mouse oocytes. Biol Reprod 77 666-670

Hwang LH, Lau LF, Smith DL, Mistrot CA, Hardwick KG, Hwang ES, Amon A & Murray AW 1998. Budding yeast Cdc20: a target of the spindle checkpoint. Science **279** 1041-1044

Hyman AA & Mitchison TJ 1991 Two different microtubule-based motor activities with opposite polarities in kinetochores. Nature 351 206-211

Igarashi H, Takahashi T, Takahashi E, Tezuka N, Nakahara K, Takahashi K & Kurachi H 2005 Aged mouse oocytes fail to readjust intracellular adenosine triphosphates at fertilization. Biol Reprod 72 1256-1261

Ikui AE, Yang CP, Matsumoto T & Horwitz S 2005 Low concentrations of taxol cause mitotic delay followed by premature dissociation of p55CDC from Mad2 and BubR1 and abrogation of the spindle checkpoint, leading to aneuploidy. Cell Cycle 4 1385-1388

Ishikawa H & Endo A 1995 Combined effects of maternal age and delayed fertilization on the frequency of chromosome anomalies in mice. Hum Reprod 10 883-

Jallepalli PV, Waizenegger I, Bunz F, Langer S, Speicher MR, Peters JM, Kinzler KW, Vogelstein B & Lengauer C 2001 Securin is required for chromosomal stability in human cells. Cell 105 445-457

Jeffreys, CA, Burrage PS & Bickel SE 2003 A model system for increased meiotic nondisjunction in older oocytes. Curr Biol 13 498-503

Jesus C, Rime H, Haccard O, Van Lint J, Goris J, Merlevede W & Ozon R 1991 Tyrosine phosphorylation of p34^{cdc2} and p42 during meiotic maturation of *Xenopus* oocyte: antagonistic action of okadaic acid and 6-DMAP. Development 111 813-820

Johnson VL, Scott MI, Holt SV, Hussein D & Taylor SS 2004 Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J Cell Sci 117 1577-1589

Juberg RC 1983 Origin of chromosomal abnormalities: evidence for delayed fertilization in meiotic nondisjunction. Hum Genet 64 122-127

Juetten J & Bavister B 1983 Effects of egg aging on in vitro fertilization and first cleavage division in the hamster. Gamete Res 8 219-230

Kalitsis P, Earle E, Fowler KJ & Choo KH 2000 Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev 14 2277-2282

Kallio M, Eriksson JE & Gorbsky GJ 2000 Differences in spindle association of the mitotic checkpoint protein Mad2 in mammalian spermatogenesis and oogenesis. *Dev Biol* **225** 112-123

Kallio MJ, McCleland ML, Stukenberg PT & Gorbsky GJ 2002 Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr Biol 12 900-905

Kamieniecki RJ, Shanks RM & Dawson DS 2000 Slk19p is necessary to prevent separation of sister chromatids in meiosis I. Curr Biol 10 1182-1190

Karsenti E 1991 Mitotic spindle morphogenesis in animal cells. Semin Cell Biol 4 251-260

Katis VL, Galova M, Rabitsch KP & Nasmyth K 2004a Maintenance of cohesion at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr Biol 14 560-572

Katis VL, Matos J, Mori S, Shirahige K, Zachariae W & Nasymth K 2004b Spo13 facilitates monopolin recruitment to kinetochores and regulates maintenance of centromeric cohesion during yeast meiosis. Curr Biol 14 2183-2196

Kaufman MH 1983 Early Mammalian Development: Parthenogenetic Studies. Cambridge: Cambridge Univ. Press. p 1-276

Kerrebrock AW, Miyazaki WY, Birnby D & Orr-Weaver TL 1992 The Drosophila mei-S332 gene promotes sister-chromatid cohesion in meiosis following kinetochore differentiation. Genetics 130 827-841

Kienitz A, Vogel C, Morales I, Muller R & Bastians H

2005 Partial downregulation of MAD1 causes spindle checkpoint inactivation and aneuploidy, but does not confer resistance towards taxol. Oncogene 24 4301-4310 Kikuchi K, Izaike Y, Noguchi J, Furukawa T, Daen FP, Naito K & Toyoda Y 1995 Decrease of histone H1 kinase activity in relation to parthenogenetic activation of pig follicular oocytes matured and aged in vitro. J Reprod Fert 105 325-330

Kikuchi K, Naito K, Noguchi J, Shimada A, Kaneko H, Yamashita M, Aoki F, Tojo H & Toyoda Y 2000 Maturation/M-phase promoting factor: a regulator of aging in porcine oocytes. Biol Rep 63 715-722

Kim NH, Moon SJ, Prather RS & Day BN 1996 Cytoskeletal alteration in aged porcine oocytes and parthenogenesis. Mol Rep Dev 43 513-518

Kirsch-Volders M, Cundari E & Verdoodt B 1998 Towards a unifying model for the metaphase/anaphase transition. Mutagenesis 13 321-335

Kitajima TS, Kawashima SA & Watanabe Y 2004 The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427 510-517

Kitajima TS, Sakuno T, Ishiguro K, Iemura S, Natsume t, Kawashima SA & Watanabe Y 2006. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441 46-52

Klein F, Mahr P, Galova M, Buonomo SB, Michaelis C, Nairz K & Nasmyth K 1999 A central role for cohesions in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98 91-103

Kline D & Kline JT 1992 Repetitive calcium transients and the role of calcium exocytosis and cell cycle activation in the mouse egg. Dev Biol 149 80-89

Knowlton AL, Lan W & Stukenberg PT 2006 Aurora B is enriched at merotelic attachment sites, where it regulates MCAK. Curr Biol 16 1705-1710

Kosower NS & Kosower EM 1978 The glutathione status of cells. Int Rev Cytol 54 109-160

Kotani S, Tanaka H, Yasuda H & Todokoro K 1999 Regulation of APC by phosphorylation and regulatory factors. J Cell Biol 146 791-800

Kubiak JZ 1989 Mouse oocytes gradually develop the capacity for activation during the metaphase II arrest. Dev Biol 136 537-545

Kuliev A, Cieslak J, Ilkevitch Y & Verlinsky Y 2003 Chromosomal abnormalities in a series of 6733 human oocytes in preimplantation diagnosis for age-related aneuploidies. Rep Biomed Online 6 54-59

Lampson MA, Renduchitala K, Khodjakov A & Kapoor TM 2004 Correcting improper chromosome-spindle attachments during cell division. Nat Cell Biol 6 232-237 Lamson SH & Hook EB 1980 A simple function for maternal age-specific rates of Down syndrome in the 20to-48 year age range and its biological implications. Am

J Hum Genet **32** 743-753

Lavoie BD, Hogan E & Koshland D 2002 In vivo dissection of the chromosome condensation machinery: reversibility of condensation distinguishes contributions of condensin and cohesion. J Cell Biol 156 805-815

Lee BH & Amon A 2003 Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation. Science 300 482-486

Lee BH, Kiburz BM & Amon A 2004 Spo13 maintains centromeric cohesion and kinetochore coorientation during meiosis I. Curr Biol 14 2168-2182

Lee J, Miyano T & Moor RM 2000 Localization of phosphorylated MAP kinase during transition from meiosis I to Meiosis II in pig oocytes. Zygote 8 119-125 Lee J, Iwai T, Yokota T & Yamashita M 2003 Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis. J Cell Sci 116 2781-2790

Lee J, Okada K, Ogushi S, Miyano T, Miyake M & Yamashita M 2006 Loss of Rec8 from chromosome arm and centromere region is required for homologous chromosome separation and sister chromatid separation, respectively, in mammalian oocytes. Cell Cycle 5 1448-

Lee JY & Orr-Weaver TL 2001 The molecular basis of sister-chromatid cohesion. Annu Rev Cell Dev Biol 17 753-777

Lee JY, Hayashi-Hagihara A & Orr-Weaver TL 2005 Roles and regulation of the Drosophila centromere cohesion protein MEI-332 family. Phil Trans R Soc B 360 543-552

Lens SMA & Medema RH 2003 The survivin/Aurora B complex: its role in coordinating tension and attachment. *Cell Cycle* **2** 507- 510

Lewis WH & Wright ES 1935 On the early development of the mouse egg. Carnegie Inst Contrib Embryol **25** 113-143

Li Y & Benezra R 1996 Identification of a human mitotic checkpoint gene hsMAD2. Science 274 246-248 Liang XW, Zhu JQ, Miao YL, Liu JH, Wei L, Lu SS, Hou Y, Schatten H, Lu KH & Sun QY 2008 Loss of methylation imprint of Snrpn in postovulatory aging mouse oocytes. Biochem Biophys Res Comm 371 16-21 Lim AS, Ho AT & Tsakod MF 1995 Chromosomes of oocytes failing in-vitro fertilization. Hum Rep 10 2570-2575

Liu L, Ju JC & Yang X 1998 Differential inactivation of maturation-promoting factor and mitogen-activated protein kinase following parthenogenetic activation of bovine oocytes. Biol Rep 59 537-545

London SN & Mailhes JB 2001 Tamoxifen-induced alterations in meiotic maturation and cytogenetic abnormalities in mouse oocytes and 1-cell zygotes. Zygote 9 97-104

Longo FJ 1981 Changes in the zona pellucida and plasmalemmae of aging mouse oocytes. Biol Rep 25 399-

Lorca T, Cruzalegul FH, Fesquet D, Cavadore D, Mery JC, Means A & Doree M 1993 Calmodulin-dependent protein kinase II mediates inactivation of MPF and CSF upon fertilization of Xenopus eggs. Nature 366 270-273 Losada A, Yokochi T, Kobayashi R & Hirano T 2000 Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesion complexes. J Cell Biol 150 405-416

Losada A, Hirano M & Hirano T 2002. Cohesin release is required for sister chromatid resolution, but not for condensing-mediated compaction at the onset of mitosis. Genes Dev 16 3004-3016

Luo X, Fang G, Coldiron M, Lin Y, Yu H, Kirschner MW & Wagner G 2000 Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nat Struct Biol 7 224-229

Ma W, Zhang D, Hou Y, Li Y-H, Sun Q-Y, Sun, X-F & Wang W-H 2005 Reduced expression of MAD2, BCL2, MAP kinase activity in pig oocytes after in vitro aging are associated with defects in sister chromatid segregation during meiosis II and embryo fragmentation after activation. Biol Rep 72 373-383

Magli C, Gianaroli L & Ferraretti AP 2001 Chromosomal abnormalities in embryos. Mol Cell Endocrinol 183 29-34

Magnaghi-Jaulin, Eot-Houllier G, Fulcrand G & Jaulin C 2007 Histone deacetylase inhibitors induce premature sister chromatid separation and override of the mitotic spindle assembly checkpoint. Cancer Res 67 6360-6367 Mailhes JB, Preston RJ & Lavappa KS 1986 Mammalian in vivo assays for aneuploidy in female germ cells Mutat Res **320** 139-148

Mailhes JB 1987 Incidence of aneuploidy in rodents. In Vig BK, Sandberg AA, editors. Aneuploidy, Part A: Incidence and Etiology. New York: Alan R. Liss. p 67-101 Mailhes JB & Yuan ZP 1987 Differential sensitivity of mouse oocytes to colchicine-induced aneuploidy. Environ Mol Mutagen 10 183-188

Mailhes JB, Marchetti F & Aardema MJ 1993 Griseofulvin-induced aneuploidy and meiotic delay in mouse oocytes: effect of dose and harvest time. Mutat Res 300 155-163

Mailhes JB & Marchetti F 1994 Chemically-induced aneuploidy in mammalian oocytes. Mutat Res 320 87-111

Mailhes JB & Marchetti F 1994a. The influence of postovulatory ageing on the retardation of mouse oocyte maturation and chromosome segregation induced by vinblastine. Mutagenesis 9 541-545

Mailhes JB, Marchetti F, Phillips Jr. GL & Barnhill DR 1994 Preferential pericentric lesions and aneuploidy induced in mouse oocytes by the topoisomerase II inhibitor etoposide. Terat Carcinogen Mutagen 14 39-51

Mailhes JB 1995 Important biological variables that can influence the degree of chemical-induced aneuploidy in mammalian oocytes and zygotes. Mutat Res 339 155-

Mailhes JB, Young D, Aardema MJ & London SN 1997a Thiabendazole-induced cytogenetic abnormalities in mouse oocytes. Environ Mol Mutagen 29 367-371

Mailhes JB, Young D & London SN 1997b 1,2-Propanediol-induced premature centromere separation in mouse oocytes and aneuploidy in one-cell zygotes. Biol Rep **57** 92-98

Mailhes JB, Young D & London SN 1998 Postovulatory ageing of mouse oocytes in vivo and premature centromere separation and aneuploidy. *Biol Rep* **58** 1206-1210 Mailhes JB, Carabatsos MJ, Young D, London SN, Bell M & Albertini DF 1999 Taxol-induced meiotic maturation delay, spindle defects, and aneuploidy in mouse oocytes and zygotes. Mutat Res 423 79-80

Mailhes JB, Hilliard C, Lowery M & London SN 2002 MG-132, an inhibitor of proteasomes and calpains, induced inhibition of oocyte maturation and aneuploidy in mouse oocytes. Cell & Chromosome 1 1-7

Mailhes JB, Hilliard, Fuseler JW & London SN 2003a Okadaic acid, an inhibitor of protein phosphatase 1 and 2A, induces premature separation of sister chromatids during meiosis I and aneuploidy in mouse oocytes in vitro. Chromosome Res 11 619-631

Mailhes JB, Hilliard C, Fuseler JW & London SN 2003b Vanadate, an inhibitor of tyrosine phosphatases, induced premature anaphase in oocytes and aneuploidy and polyploidy in mouse bone marrow cells. Mutat Res 538 101-107

Mailhes JB, Mastromatteo C & Fuseler JW 2004 Transient exposure to the Eg5 kinesin inhibitor monastrol leads to syntelic orientation of chromosomes and aneuploidy in mouse oocytes. Mutat Res 559 153-167

Marchetti F & Mailhes JB 1995 Variation of mouse oocyte sensitivity to griseofulvin-induced aneuploidy during the second meiotic division. Mutagenesis 10 113-121 Marchetti F, Bishop JB, Lowe X, Generoso WM, Hozier J & Wyrobek AJ 2001 Etoposide induces heritable chromosomal aberrations and aneuploidy during male meiosis in the mouse. Proc Natl Acad Sci USA 98 3952-3957

Marston JH & Chang MC 1964 The fertilizable life of ova and their morphology following delayed insemination in mature and immature mice. J Exp Zool 155 237-252

Marston AL & Amon A 2004 Meiosis: cell-cycle controls shuffle and deal. Nat Rev Mol Cell Biol 5 983-987 Marston AL, Tham WH, Shah H & Amon A 2004 A genome-wide screen identifies genes required for centromeric cohesion. Science 303 1367-1370

McConnell JM, Campbell L & Vincent C 1995 Capacity of mouse oocytes to become activated depends on completion of cytoplasmic but not nuclear meiotic maturation. Zygote **3** 45-55

McGuinness BE, Hirota T, Kudo NR, Peters JM & Nasmyth K 2005 Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol 3 e86

Meraldi P, Honda R & Nigg EA 2004. Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr Opin Genet Dev 14 29-36

Michaelis C, Ciosk R & Nasmyth K 1997 Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91 35-45

Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W, Dobles M, Lorger PK, Murty VVVS & Benerza R 2001 MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409 355-359

Michel L, Diaz-Rodriguez E, Narayan G, Hernando E, Vundavalli M & Benezra R 2004 Complete loss of the tumor suppressor MAD2 causes premature cyclin B degradation and mitotic failure in human somatic cells. Proc Natl Acad Sci USA 101 4459-4464

Miller BM & Adler I-D 1992 Aneuploidy induction in mouse spermatocytes. Mutagenesis 7 69-76

Miyazaki WY & Orr-Weaver TL 1992 Sisterchromatid misbehavior in Drosophila ord mutants. Genetics 132 1047-1061

Miyazaki WY & Orr-Weaver TL 1994 Sisterchromatid cohesion in mitosis and meiosis. Ann Rev Genet 28 167-187

Moos J, Visconti PW, Moore GD, Schultz RM & Kopf GS 1995 Potential role of mitogen-activated protein kinase (MAP) in pronuclear envelope assembly and disassembly following fertilization of mouse eggs. Biol Reprod **53** 692-699

Moses RM & Masui Y 1994 Enhancement of mouse activation by the kinase inhibitor, 6dimethylainopurine (6-DMAP). J Exp Zool 270 211-218

Morita Y & Tilly JL 1999 Oocyte apoptosis: like sand through an hourglass. Dev Biol 213 1-17

Munne S 2002 Preimplantation genetic diagnosis of numerical and structural chromosome abnormalities. Reprod Biomed Online 4 183-196

Murray AW 1998 MAP kinases in meiosis. Cell 92 157-159

Musacchio A & Hardwick KG 2002 The spindle checkpoint: structural insights into dynamic signaling. Nat Rev Mol Cell Biol 3 731-741

Nagai T 1987 Parthenogenetic activation of cattle follicular oocytes in vitro with ethanol. Gamete Res 16 243-249

Nasmyth K, Peters JM & Uhlmann F 2000 Splitting the chromosome: Cutting the ties that bind sister chromatids. Science 288 1379-1384

Nasmyth K 2001 Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35 673-745

Nasmyth K 2002 Segregating sister genomes: the molecular biology of chromosome separation. Science **297** 559-565

Nasmyth K & Schleiffer A 2004 From a single double helix to paired double helices and back. Phil Trans R Soc Lond B 359 99-108

Nasmyth K 2005 How do so few control so many? Cell 120 739-746

Nguyen HG, Chinnappan D, Urano T & Ravid K 2005 Mechanism of Aurora-B degradation and its dependency on intact KEN and A-boxes: identification of an aneuploidy-promoting property. Mol Cell Biol 25 4977 -4992.

Nicolaidis P & Petersen MB 1998 Origin and mechanisms of non-disjunction in human autosomal trisomies. Human Reprod 13 313-319

Nicklas RB 1997 How cells get the right chromosomes. Science 275 632-637

O'Neill GT & Kaufman MH 1988 Influence of postovulatory aging on chromosome segregation during the second meiotic division in mouse oocytes: a parthenogenetic analysis. J Exptl Zool 248 125-131

Ono T, Fang Y, Spector DL & Hirano T 2004 Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells. Mol Biol Cell 15 3296-3308

Orrenius S, Burkitt MJ, Kass GN, Dypbukt JM & Nicotera P 1992 Calcium ions and oxidative cell injury. Ann Neurol 32 S33-S42.

Pacchierotti F 1988 Chemically induced aneuploidy in germ cells of mouse. In Vig BK, Sandberg AA, editors. Aneuploidy, Part B: Induction and Test Systems, Progress and Topics in Cytogenetics, Vol. 7b. New York: Alan R. Liss. p 123-139

Pacchierotti F & Ranaldi R 2006 Mechanisms and risk of chemically induced aneuploidy in mammalian germ cells. Curr Pharm Des 12 1489-1504

Pacchierotti F, Adler I-D, Eichenlaub-Ritter U & Mailhes JB 2007 Gender effects on the incidence of aneuploidy in mammalian germ cells. Environ Res 104 46 -69

Pahlavan G, Polanski Z, Kalab P, Golsteyn R, Nigg EA & Maro B 2000 Characterization of polo-like kinase 1 during meiotic maturation of the mouse oocyte. Dev Biol 220 392-400

Panizza S, Tanaka T, Hochwagen A, Eisenhaber F & Nasmyth K 2000 Pds5 cooperates with cohesion in maintaining sister chromatid cohesion. Curr Biol 10 1557-1564

Parisi S, McKay MJ, Molnar M, Thompson MA, van der Spek PJ, van Drunen-Schoenmaker E, Kanaar R, Lehmann E, Hoeijmakers JH & Kohli J 1999 Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol Cell Biol 19 3515-3528

Parra M, Viera A, Gomez R, Page J, Benavente R, Santos JL, Rufas JS & Suja JA 2004 Involvement of the cohesion Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J Cell Sci 117 1221-1234

Parry JM, Henderson L & Mckay JM 1995 Procedures for the detection of chemically induced aneuploidy: recommendations of a UK Environmental Mutagen Society working group. Mutagenesis 10 1-14

Pasierbek P, Jantsch M, Melcher M, Schleiffer A, Schweizer D & Loidl J 2001 A Caenorhaboditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev 15 1349-

Paules RS, Buccione R, Moschel RC, Vande Woude GF & Eppig JJ 1989 Mouse mos protooncogene product is present and functions during oogenesis. Proc *Natl Acad Sci USA* **86** 5395-5399

Pellestor F 1991 Frequency and distribution of aneuploidy in human female gametes. Hum Genet 86 283-288

Pellestor F, Andreo B, Arnal F, Humeau C & Demaille J 2002 Mechanisms of non-disjunction in human female meiosis: the co-existence of two modes of malsegregation evidenced by the karyotyping of 1397 invitro unfertilized oocytes. Hum Rep 17 2134-2145

Pellestor F, Andreo, Arnal F, Humeau C & Demaille J 2003 Maternal aging and chromosome abnormalities: new data drawn from in vitro unfertilized aged oocytes. Hum Genet 112 195-203

Pellestor F, Anahory T & Hamamah S 2005 The chromosomal analysis of human oocytes. An overview of established procedures. Hum Rep Update 11 15-32

Pellestor F, Andreo B, Anahory T & Hammamah S 2006 The occurrence of an euploidy in human: lessons from the cytogenetic studies of human oocytes. Eur J Med Genet 49 103-116

Perez GI, Tao XJ & Tilly JL 1999. Fragmentation and death (a.k.a. apoptosis) of ovulated oocytes. Mol Human Rep 5 414-420

Peter M, Castro A, Lorca T, Le Peuch C, Magnaghi-Jaulin Doree M & Labbe JC 2001 The APC is dispensable for first meiotic division in Xenopus oocytes. Nature Cell Biol 3 83-87

Peters JM 2002 The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell 9 931-943

Petronczki M, Siomos MF & Nasmyth K 2003 Un Ménage à Quatre: The molecular biology of chromosome segregation in meiosis. Cell 112 423-440

Pickering SJ, Johnson MH, Braude Pr & Houliston E 1988 Cytoskeletal organization in fresh, aged and spontaneously activated human oocytes. Hum Rep 3 978-989

Plachot M 2003 Genetic analysis of the oocyte - A review. Placenta 24 S66-S69

Plachot M, deGrouchy J, Junca AM, Mandelbaum J, Salat-Baroux J & Cohen J 1988. Chromosome analysis of human oocytes and embryos: does delayed fertilization increase chromosome imbalance? Hum Rep 3 125-

Prawitt D, Brixel L, Spangenberg C. Eshkind L, Heck R, Oesch F, Zabel B & Bockamp E 2004 RNAi knockdown mice: an emerging technology for post-genomic functional genetics. Cytogenet Genome Res 105 412-

Prieto I, Suja JA, Pezzi N, Kremer L, Martinez AC, Rufas JS & Barbero JL 2001 Mammalian STAG3 is a cohesion specific to sister chromatid arms in meiosis I. *Nat Cell Biol* **3** 761-766

Prieto I, Tease C, Pezzi N, Buesa JM, Ortega S, Kremer L, Martinez A, Martinez AC, Hulten MA & Barbero JL 2004 Cohesion component dynamics during meiotic prophase I in mammalian oocytes. Chromosome Res 12 197-213

Prieto I, Pezzi N, Buesa JM, Kremer L, Barthelemy I, Carreiro C, Roncal F, Martinez A, Gomez L, Fernandez R, Martinez AC & Barbero JL 2002 STAG2 and Rad21 mammalian mitotic cohesions are implicated in meiosis. EMBO Rep 3 543-550

Rabitsch KP, Gregan J, Schleiffer A, Javerzat JP, Eisenhaber F & Nasmyth K 2004 Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Curr Biol 14 287-301

Racowsky C 1993 Somatic control of meiotic status in mammalian oocytes, In Haseltine FP, Heyner S, editors. Meiosis II, Contemporary Approaches to the Study of Meiosis. Wash. D.C.: Amer Assoc Adv Science Press. p 107-116

Rajagopalan H & Lengauer C 2004 Aneuploidy and cancer. Nature 432 338-341

Revenkova E, Eijpe M, Heyting C, Gross B & Jessberger R 2001 Novel meiosis-specific isoform of mammalian SMC1. Mol Cell Biol 21 6984-6998

Revenkova E & Jessberger R 2005 Keeping sister chromatids together: cohesins in meiosis. Reproduction **130** 783-790

Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A & Chinnaiyan AM 2004 Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA 101 9309-9314

Riedel CG, Katis VL, Katou Y, Itoh T, Helmhart W, Galova M, Petronczki M, Gregan J, Cetin B, Mudrak I, Ogris E, Mechtler K, Pelletier L, Bucholz F, Shirahige K & Nasmyth K 2006 Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. *Nature* **441** 53-61

Rieder CL & Palazzo RE 1992 Colcemid and the mitotic cycle. *J Cell Sci* **102** 387-392

Rieder CL & Salmon ED 1998 The vertebrate cell kinetochore and its role during mitosis. Trends Cell Biol 8 310-318

Rieder CL, Schultz A, Cole R & Sluder G 1994 Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment at the spindle. J Cell Biol 127 1301-1310

Rieder CL & Maiato H 2004 Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 7 637-651

Rime H, Neant I, Guerrier P & Ozon R 1989 6dimethylaminopurine (6-DMAP), a reversible inhibitor of the transition to metaphase during the first meiotic cell division of the mouse oocyte. Dev Biol 133 169-

Rodman TC 1971 Chromatid disjunction in unfertilized ageing oocytes. Nature 233 191-193

Romanienko PJ & Camerini-Otero RD 2000 The mouse Spo11 gene is required for meiotic chromosome synapsis. *Mol Cell* **6** 975-987

Rose D, Thomas W & Holm C 1990 Segregation of recombined chromosomes in meiosis requires DNA topoisomerase II. Cell 60 1009-1017

Rosenbusch B 2004 The incidence of aneuploidy in human oocytes assessed by conventional cytogenetic analysis. Hereditas 141 97-105

Russo A & Pacchierotti F 1988 Meiotic arrest and aneuploidy induced by vinblastine in mouse oocytes. Mutat Res 202 215-221

Sagata N 1996 Meiotic metaphase arrest in animal oocytes: its mechanisms and biological significance. Trends Cell Biol 6 22-28

Sagata N 1997 What does Mos do in oocytes and somatic cells? BioEssays 19 13-21

Saito H, Koike K, Saito T, Nohara M, Kawagoe S & Hiroi M 1993 Aging changes in the alignment of chromosomes after human chorionic gonadotropin stimulation may be a possible cause of decreased fertility in mice. Horm Res 39 28-31

Sakai N & Endo A 1988 Effects of delayed mating on preimplantation embryos in spontaneously ovulated mice. Gamete Res 19 381-385

Sakurada K, Ishikawa H & Endo A 1996 Cytogenetic

effects of advanced maternal age and delayed fertilization on first-cleavage mouse embryos. Cytogen Cell Genet 72 46-49

Salah SN & Nasmyth K 2000 Destruction of the securing Pds1p occurs at the onset of anaphase during both meiotic divisions in yeast. Chromosoma 109 27-34

Salic A, Waters JC & Mitchison TJ 2004 Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stabilization in mitosis. Cell 118 567-578

Salmon ED, Cimini D, Cameron LA & DeLuca JG 2005 Merotelic kinetochores in mammalian tissue cells. Phil Trans R Soc B 360 553-568

Schlecht U & Primig M 2003 Mining meiosis and gametogenesis with DNA microarrays. Reproduction 125 447-456

Schönthal S 1992 Okadaic acid-a valuable new tool for the study of signal transduction and cell cycle regulation? New Biol 4 16-21

Schultz RM 1988 Regulatory functions of protein phosphorylation in meiotic maturation of mouse oocytes in vitro. In Haseltine FP, First NL, editors. Meiotic Inhibition: Molecular Control of Meiosis. New York: Alan R Liss. p 137-151

Schultz RM, Montgomery RR & Belanoff JR 1983 Regulation of mouse oocyte maturation: implication of a decrease in oocyte cAMP and protein dephosphorylation in commitment to resume meiosis. Dev Biol 97 264-273

Schultz RM 1986 Molecular aspects of mammalian oocyte growth and maturation, in Rossant J, Pederson RA, editors. Experimental Approach to Mammalian Embryonic Development. Cambridge UK: Cambridge University Press. p 195-237

Schwartz DA & Schultz RM 1991 Stimulatory effect of okadaic acid, an inhibitor of protein phosphatases, on nuclear envelope breakdown and protein phosphorylation in mouse oocytes and one-cell zygotes. Dev Biol **145** 119-127

Segers I, Adriaenssens T, Coucke W, Cortvrindt R & Smitz J 2008 Timing of nuclear maturation and postovulatory aging in oocytes of in vitro-grown mouse follicles with of without oil overlay. Biol Rep 78 859-

Shah JV, Botvinick E, Bonday Z, Fumari F, Berns M & Cleveland DW 2004 Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing. Curr Biol 14 942-952

Shamu CE & Murray AW 1992 Sister chromatid separation in frog extracts requires DNA topoisomerase II activity during anaphase. J Cell Biol 117 921-934

Shang C, Hazbun TR, Cheesman IM, Arand J, fields S, Drubin DG & Barnes G 2003 Kinetochore protein interactions and their regulation by Aurora kinase Ipl1p.

Mol Biol Cell 14 3342-3355

Shaver EL & Carr DH 1967 Chromosome abnormalities in rabbit blastocysts following delayed fertilization. J Reprod Fert 14 415-420

Shonn MA, McCarroll R & Murray AW 2000 Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis. Science **289** 300-303

Simerly C, Balczon R, Brinkley BR & Schatten G 1990 Microinjected centromere [corrected] kinetochore antibodies interfere with chromosome movement in meiotic and mitotic mouse oocytes. J Cell Biol 111 1491-1504

Singh B & Arlinghaus RB 1997 Mos and the cell cycle. Prog Cell Cycle Res 3 251-259

Siomos MF, Badrinath A, Pasierbek P, Livingstone D, White J, Glotzer M & Nasmyth K 2001 Separase is required for chromosome segregation during meiosis I in Caenorhabditis elegans. Curr Biol 11 1825-1835

Sluder G 1979 Role of spindle microtubules in the control of cell cycle timing. J Cell Biol 80 674-691

Sluder G & Rieder CL 1993 The events and regulation of anaphase onset. In Vig BK, editor. Chromosome Segregation and Aneuploidy, NATO ASI Series, Vol. H72. Berlin: Springer-Verlag. p 211-224

Sluder G & McCollum D 2000 The mad ways of meiosis. Science 289 254-255

Smith AL & Lodge JR 1987 Interactions of aged gametes: in vitro fertilization using in vitro-aged sperm and in vivo-aged ova in the mouse. Gamete Res 16 47-56 Sobajima T, Aoki F & Kohomoto K 1993 Activation of mitogen-activated protein kinase during meiotic maturation in mouse oocytes. J Rep Fert 97 389-394

Sonada E, Matsusaka T, Morrison C, Vagnarelli P, Hoshi O, Ushiki T, Nojima K, Fukagawa T, Waizenegger IC, Peters JM, Earnshaw WC & Takeda S 2001 Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev Cell 1 759-770

Stein P, Svoboda P & Schultz RM 2003 Transgenic RNAi in mouse oocytes: a simple and fast approach to study gene function. Dev Biol 256 187-193

Stern BM 2002 Mitosis: aurora gives chromosomes a healthy stretch. Curr Biol 12 R316-318

Steuerwald N, Cohen J, Herrera RJ, Sandalinas M & Brenner CA 2001 Association between spindle assembly checkpoint expression and maternal age in human oocytes. Mol Hum Reprod 7 49-55

Steuerwald N, Steuerwald MD & Mailhes JB 2005 Postovulatory aging of mouse oocytes leads to decreased MAD2 transcripts and increased frequencies of premature centromere separation and anaphase. Mol Hum Rep 11 623-630

Strausfeld U, Labbe JC, Fesquet D, Cavadore JC,

Picard A, Sadhu K, Russell P & Doree M 1991 Dephosphorylation and activation of a p34^{cdc2} / cyclin B complex in vitro by human CDC25 protein. Nature **351** 242-245

Sumara I, Vorlaufer E, Stukenberg PT, Kelm O, Redemann N, Nigg EA & Peters JM 2002 The dissociation of cohesion from chromosomes in prophase is regulated by Polo-like kinase. Mol Cell 9 515-525

Sumara I, Gimenez-Abian JF, Gerlich D, Hirota T, Kraft C, de la torre C, Ellenberg J & Peters JM 2004 Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr Biol 14 1712-1722

Sun FY, Schmid TE, Schmid E, Baumgartner A & Adler ID 2000 Trichlorfon induces spindle disturbances in V79 cells and aneuploidy in male mouse germ cells. Mutagenesis 15 17-24

Swain JE & Smith GD 2007 Reversible phosphorylation and regulation of mammalian oocyte meiotic chromatin remodeling and segregation. Soc Reprod Fert Suppl **63** 343-358

Szollosi D 1971 Morphological changes in mouse eggs due to aging in the fallopian tube. Am J Anat 130 209-226

Szollosi D 1975 Mammalian eggs ageing in the fallopian tubes. In Blandeau RJ, editor. Ageing Gametes. Basel: Karger. p 98-121

Szollosi MS, Debey P, Szollosi D, Rime H & Vautier D 1991 Chromatin behavior under influence of puromycin and 6-DMAP at different stages of mouse oocyte maturation. Chromosoma 100 339-354

Szollosi MS, Kubiak JZ, Debey P, de Pennart H, Szollosi D & Maro B 1993 Inhibition of protein kinases by 6-dimethylaminopurine accelerates the transition to interphase in activated mouse oocytes. J Cell Sci 104 861-872

Takahashi T, Takahashi E, Igarashi H, Tezuka N & Kurachi H 2003 Impact of oxidative stress in aged mouse oocytes on calcium oscillations at fertilization. Mol Rep Dev 66 143-152

Takenaka K, Moriguchi T & Nishida E 1998 Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science 280 599-602

Tanaka T, Fuchs J, Loidl J & Nasmyth K 2000 Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. *Nat Cell Biol* **2** 492-499

Tanaka TU, Rachidi N, Janke C, Pereira G, Galova M, Schiebel E, Stark MJ & Nasmyth K 2002 Evidence that the IpI1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108 317-

Tang Z, Sun Y, Harley SE, Zou H & Yu H 2004 Human Bub1 protects centromeric sister-chromatid cohe-

sion through Shugoshin during mitosis. Proc Natl Acad Sci USA 101 18012-18017

Tang Z, Shu H, Qi W, Mahmood NA, Mumby MC & Yu H 2006 PP2A is required for centromeric location of Sgo1 and proper chromosome segregation. Dev Cell **10** 575-585

Tateno H & Kamiguchi Y 2001 Meiotic stagedependent induction of chromosome aberrations in Chinese hamster primary oocytes exposed to topoisomerase II inhibitor etoposide. Mutat Res 476 139-148

Tarin JJ, Vendrell FJ, Ten J, Blanes R, Van Blerkom J & Cano A 1996 The oxidizing agent tertiary butyl hydroperoxide induces disturbances in spindle organization, c-meiosis, and aneuploidy in mouse oocytes. Mol Hum Rep 2 895-901

Tatone C, Carbone MC, Gallo R, Monache SD, Di Cola M, Alesse E & Amicarelli F 2006 Age-associated changes in mouse oocytes during postovulatory in vitro culture: possible role for meiotic kinases and survival factor BCL2. Biol Rep 74 395-402

Taylor SS, Ha E & McKeon F 1998 The human homolog of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J Cell Biol 142 1-11

Taylor SS, Hussein D, Wang Y, Elderkin S & Morrow CJ 2001 Kinetochore localization and phosphorylation of the mitotic checkpoint components Bub1 and BubR1 are differentially regulated by spindle events in human cells. J Cell Sci 114 4385-4395

Taylor SS, Maria I, Scott F & Holland AJ 2004 The spindle checkpoint: a quality control mechanism which ensures accurate chromosome segregation. Chromosome Res 12 599-616

Terret ME, Wassmann K, Waizenegger I, Maro B, Peters JM & Verlhac MH 2003 The meiosis I-to-meiosis II transition in mouse oocytes requires separase activity. Curr Biol 13 1797-1802

Thein KH, Kleylein-Sohn J, Nigg EA & Gruneberg U 2007 Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity. J Cell Biol 178 345-354

Tiveron C, Marchetti F, Bassani B & Pacchierotti F 1992 Griseofulvin-induced aneuploidy and meiotic delay in female mouse germ cells. I. Cytogenetic analysis of metaphase II oocytes. Mutat Res 266 143-

Tombes RM, Semerly C, Borisy GG & Schatten G 1992. Meiosis, egg activation, and nuclear envelope breakdown are differentially reliant on Ca²⁺ independent in the mouse oocyte. J Cell Biol 117 799-811

Tomonaga T, Nagao K, Kawasaki Y, Furuya K, Murakami A, Morishita J, Yuasa Y, Sutani T, Kearsey SE, Uhlmann F, Nasmyth K & Yanagida M 2000 Genes Dev 14 2757-2770

Tong C, Fan HY, Lian I, Li SW, Chen DY, Schatten H & Sun QY 2002 Polo-like kinase 1 is a pivotal regulator of microtubule assembly during mouse oocyte meiotic maturation, fertilization, and early embryonic mitosis. Biol Rep 67 546-554

Toyooka Y, Tsunekawa N, Akasu R & Noce T 2003 Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA 100 11457-11462

Toth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A & Nasmyth K 1999 Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13 320-333

Tsurumi C, Hoffmann S, Geley S, Graeser R & Polanski Z 2004 The spindle assembly checkpoint is not essential for CSF arrest of mouse oocytes. J Cell Biol **167** 1037-1050

Uhlmann F, Lottspeich F & Nasmyth K 1999 Sisterchromatid separation at anaphase onset is promoted by cleavage of the cohesion subunit Scc1. Nature 400 37-

Uhlmann F 2001 Chromosome cohesion and segregation in mitosis and meiosis. Curr Opin Cell Biol 13 754-761

Uhlmann F 2003a Chromosome cohesion and separation: from men to molecules. Curr Biol 13 R104-R114 Uhlmann F 2003b Separase regulation during mitosis. Biochem Soc Symp 70 243-251

Vagnarelli P & Earnshaw WC 2004 Chromosomal passengers: the four-dimensional regulation of mitotic events. Chromosoma 113 211-222

Vandre DD & Willis VL 1992 Inhibition of mitosis by okadaic acid: possible involvement of a protein phosphatase 2A in the transition from metaphase to anaphase. J Cell Sci 101 79-91

Van Heemst D & Heyting C 2000 Sister chromatid cohesion and recombination in meiosis. Chromosoma **109** 10-26

Verlhac M.H., Kubiak JZ, Clarke HJ & Maro BH 1994 Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development 120 1017-1025

Vialard F, Petit C, Bergere M, Gomes DM, Martel-Petit V, Lombroso R, Ville Y, Gerard H & Selva J 2006 Evidence of a high proportion of premature unbalanced separation of sister chromatids in the first polar bodies of women of advanced age. Hum Rep 21 1172-1178

Vickers AD 1969 Delayed fertilization and chromosomal anomalies in mouse embryos. J Rep Fert 20 69-76 Vigneron S, Prieto S, Bernis C, Labbe JC, Castro A & Lorca T 2004 Kinetochore localization of spindle checkpoint proteins: Who controls whom. Mol Biol

Cell 15 4584-4596

Vincent C, Cheek TR & Johnson MH 1992 Cell cycle progression of parthenogenetically activated mouse oocytes to interphase is dependent on the level of internal calcium. J Cell Sci 103 389-396

Waizenegger I, Hauf S, Meinke A & Peters JM 2000 Two distinct pathways remove mammalian cohesion from chromosome arms in prophase and from centromeres in anaphase. Cell 103 399-410

Waizenegger I, Gimenez-Abian JF, Wernic D & Peters JM 2002 Regulation of human separase by securin binding and autocleavage. Curr Biol 12 1368-1378

Wang JC 2002 Cellular roles of DNA topoisomerase: a molecular perspective. Nat Rev Mol Cell Biol 3 430-440

Wang H & Hoog C 2006 Structural damage to meiotic chromosomes impairs DNA recombination and checkpoint control in mammalian oocytes. J Cell Biol 173 485-495

Wang XM, Yew N, Peloquin JG, Vande Woude GF & Borisy GG 1994 Mos oncogene product associates with kinetochores in mammalian somatic cells and disrupts mitotic progression. Proc Natl Acad Sci USA 91 8329-8333

Wang X & Dai W 2005 Shugoshin, a guardian for sister chromatid segregation. Exptl Cell Res 310 1-9

Warburton D 2005 Biological aging and the etiology of aneuploidy. Cytogenet Genome Res 111 266-272

Wassmann K, Niault T & Maro B 2003 Metaphase I arrest upon activation of the Mad2-dependent spindle checkpoint in mouse oocytes. Cur Biol 13 1596-1608

Watanabe Y & Kitajima TS 2005 Shugoshin protects cohesion complexes at centromeres. Philos Trans R Soc Lond B Biol Sci 360 515-521

Webb M, Howlett SK & Maro B 1986 Parthenogenesis and cytoskeleton organization in aging mouse eggs. J Embryol Exp Morphol 95 131-145

Weiss E & Winey M 1996 The S. cerevisiae SPB duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 132 111-123

Whittingham DG & Siracusa G 1978 The involvement of calcium in the activation of mammalian oocytes. Exp Cell Res 113 311-317

Wilcox AJ, Weinberg CR & Baird DD 1998 Postovulatory ageing of the human oocyte and embryo failure. Hum Rep 13 394-397

Winston N, Johnson M, Pickering S & Braude P 1991 Parthenogenetic activation and development of fresh and aged human oocytes. Fert Ster 56 904-912

Wolf DP, Alexander M, Zelinski-Wooten M & Stouffer RL 1996 Maturity and fertility of rhesus monkey oocytes collected at different intervals after an ovulatory stimulus (human chorionic gonadotropin) in in vitro fertilization cycles. Mol Rep Dev 43 76-81

Wolstenholme J & Angell RR 2000 Maternal age and trisomy – a unifying mechanism of formation. Chromosoma **109** 435-438

Wu B, Ignotz G, Currie WB & Yang X 1997 Expression of Mos proto-oncoprotein in bovine oocytes during maturation in vitro. Biol Rep 56 260-265

Wyrobek AJ, Aardema M, Eichenlaub-Ritter U, Ferguson L & Marchetti F 1996 Mechanisms and targets involved in maternal and paternal age effects on numerical aneuploidy. Environ Mol Mutagen 28 254-264 Xu Z, Abbott A, Kopf GS, Schultz RM & Ducibella T 1997 Spontaneous activation of ovulated mouse eggs: time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1,4,5-triphosphate sensitivity. Biol Rep **57** 743-750

Yamamoto M & Ingalls TH 1972 Delayed fertilization and chromosome anomalies in the hamster embryo. Science 176 518-521

Yamasita M, Mita K, Yoshida N & Kondo T 2000 Molecular mechanisms of the initiation of oocyte maturation: general and species-specific aspects. Prog Cell Cycle Res 4 115-129

Yanagimachi R & Chang MC 1961 Fertilizable life of golden hamster ova and their morphological changes at the time of losing fertilizability. J Exp Zool 148 185-197 Yanagida M 2005 Basic mechanisms of eukaryotic chromosome segregation. Phil Trans R Soc B 360 609-621

Yin H, Baart E, Betzendahl & Eichenlaub-Ritter U 1998 Diazepam induces meiotic delay, aneuploidy and predivision of homologues and chromatids in mammalian oocytes. Mutagenesis 13 567-580

Yu HG & Koshland D 2005 Chromosome morphogenesis: condensin-dependent cohesion removal during meiosis. Cell 123 397-407

Yuen KW, Montpetit B & Hieter P 2005 The kinetochore and cancer: what's the connection? Curr Opin Cell Biol 17 576-582

Zachariae W & Nasmyth K 1999 Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev 13 2039-2058

Zackowski J & Martin-Deleon PA 1988 Second meiotic nondisjunction is not increased in postovulatory aged murine oocytes fertilized in vitro. In vitro Cell Dev Biol **24** 133-137

Zenzes MT & Casper RF 1992 Cytogenetics of human oocytes, zygotes, and embryos after in vitro fertilization. Hum Genet 88 367-375

Zernicka-Goetz M & Maro B 1993 Okadaic acid affects spindle organization in metaphase II-arrested rat oocytes. Exptl Cell Res 207 189-193

Zernicka-Goetz M, Kubiak JZ, Antony C & Maro B 1993 Cytoskeletal organization of rat oocytes during metaphase II arrest and following abortive activation: a study by confocal laser scanning microscopy. Mol Rep Dev **35** 165-175

Zhang D & Nicklas R 1996 Anaphase and cytokinesis in the absence of chromosomes. Nature 382 466-468

Zhang D, Ma W, LI Y-H, Hou Y, Li S-W, Meng X-Q, Sun X-F. Sun, Q-Y & Wang W-H 2004 Intra-oocyte localization of MAD2 and its relationship with kinetochores, microtubules, and chromosomes in rat oocytes during meiosis. Biol Rep 71 740-748

Zhang D, Li M, Ma W, Yi H, Li Y-H, Li S-W, Sun Q-Y & Wang W-H 2005 Localization of mitotic arrest deficient 1 (MAD1) in mouse oocytes during the first meiosis and its functions as a spindle checkpoint protein. Biol Rep 72 58-68

Zhao X, Singh B & Batten BE 1991 The role of *c-mos* proto-oncoprotein in mammalian meiotic maturation. Oncogene 6 43-49

Zhou J, Yao J & Joshi HC 2002 Attachment and tension in the spindle checkpoint. J Cell Sci 115 3547-3555