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Abstract

Aneuploidy represents the most prevalent genetic dis-
order of man. Its association with spontaneous abor-
tions, mental and physical retardation, and numerous
malignant cells is well-known. Unfortunately, little is
known about the causes and even less about the under-
lying molecular mechanisms of aneuploidy, especially
in mammalian germ cells. Although several etiologies
have been proposed for describing human aneuploidy,
the only consistent finding remains its positive correla-
tion with maternal age. At the outset, it is essential to
point out that there exist numerous potential causes
and mechanisms for the etiology of aneuploidy. Never-
theless, information about the molecular mechanisms
of chromosome segregation in various species is pro-
viding a foundation for research designed to investi-
gate the causes and mechanisms of aneuploidy. The

intent of this review is to propose that the biochemical
reactions and cellular organelles responsible for accu-
rate chromosome segregation become compromised
during postovulatory and in vitro oocyte aging; thus,
increasing the probability of faulty chromosome segre-
gation. Recent data have shown that the efficacies of
the spindle assembly checkpoint and the chromosome
cohesion proteins diminish as oocytes age postovula-
tion and during in vitro culture. Such changes repre-
sent potential models for studying aneuploidy. Prior to
describing the biochemical and cellular organelle
changes found in aged oocytes and their effect on
chromosome segregation, an overview of the molecu-
lar details surrounding chromosome segregation is pre-
sented.

Introduction

This review is based on the premise that postovulatory
and in vitro oocyte aging are accompanied by a pro-
gressive and functional deterioration of the biochemi-
cal pathways and cellular organelles responsible for
chromosome segregation. This review does not delve
into the extensive literature dealing with the relation-
ship between maternal age and aneuploidy.

The identification, chronology, and interaction
of the biochemical events associated with chromosome
segregation are undergoing extensive investigation -
mainly in models other than mammalian oocytes. Such
data provide a foundation for designing experiments to
study aneuploidy in mammalian germ cells. To pre-
serve genomic integrity, the interactions between
unique biochemical pathways and cellular organelles
must be choreographed precisely during mitosis and
meiosis. Disarray among these events can result in
aneuploidy. At the least, accurate chromosome segre-
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gation requires the temporally-coordinated interaction
among: protein kinases and phosphatases, topoisom-
erases, DNA decantination, chiasmata resolution, chro-
matin condensation, microtubule Kkinetics, centro-
somes, kinetochore-microtubule attachment and ten-
sion, kinetochores and their associated proteins, motor
and passenger proteins, chromosome biorientation,
spindle checkpoint proteins, anaphase promoting com-
plex, proteasomes, securin, cohesin, and separin pro-
teins. Furthermore, the complexity of studying ane-
uploidy is illustrated by the approximate 5,000 yeast
genes that have been directly or indirectly associated
with chromosome segregation. Many of these genes
are also found in humans, and it appears that the basic
mechanisms of chromosome segregation are similar
between budding yeast (Saccharomyces cervisiae),
fission yeast (Schizosaccharomyces pombe), and other
eukaryotes (Yanagida 2005).

Numerous reports have described biochemical
and cellular organelle changes in aged oocytes. How-
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ever, relatively few studies were designed to concomi-
tantly study such changes and aneuploidy under the
same experimental design. Those that have done so,
found a positive correlation between biochemical and
cellular organelle alterations and aneuploidy (Emery et
al. 2005, Mailhes et al. 1998, Plachot et al. 1988, Rod-
man 1971, Sakurada et al. 1996, Yamamoto & Ingalls
1972). It is suggested that experimental manipulation
of the reported changes in aged oocytes can be used as
models for investigating some of the numerous poten-
tial mechanisms of aneuploidy. Recent data from
mammalian oocytes showed that degradation of spin-
dle-assembly checkpoint (SAC) proteins (Homer et al.
2005a, Steuerwald ef al. 2005) and chromosome cohe-
sion proteins (Hodges et al. 2001, 2005, Prieto et al.
2004) increased the probability of premature centro-
mere separation (PCS) and aneuploidy. The reader is
referred to other reviews involving aneuploidy in male
germ cells (Adler et al. 2002, Handel et al. 1999) and
neoplastic cells (Bharadwaj & Yu 2004, Rajagopalan
& Lengauer 2004, Yuen et al. 2005).

Overview of Mammalian Oocyte Aneuploidy Re-
search

Although aneuploidy represents the greatest genetic
affliction of man, little is known about its causes and
even less about its underlying molecular mechanisms,
especially in mammalian germ cells. Human ane-
uploidy is linked with embryonic loss, mental and
physical anomalies in newborns, and cancer. Approxi-
mately 10-30% of human zygotes (Ford 1981, Hans-
mann 1983, Hassold & Hunt 2001), 50% of spontane-
ous abortuses (Bond & Chandley 1983, Hook 1985a),
and 0.31% (204/64887) of human newborns (Hecht &
Hecht 1987) have an abnormal chromosome number.
Furthermore, data based on cytogenetic analyses of
human oocytes and preimplantation embryos indicate
that over 50% are aneuploid (Kuliev et al. 2003, Magli
et al. 2001, Munne 2002). When considering preim-
plantation genetic diagnosis for aneuploidy, it seems
relevant to note that within embryonic variation was
reported among blastomeres when FISH technology
was employed (Coulam ef al. 2007).

For decades, numerous hypotheses have been
proposed for the etiology of human germ cell ane-
uploidy. However, the only constant finding remains
its positive correlation with maternal age (Bond &
Chandley 1983, Chandley 1987, Hook 1985b). Even
for this relationship, definitive data about the underly-
ing mechanisms are lacking (Pellestor et al. 2005,
Warburton 2005). Besides maternal age, other findings
also appear relevant for understanding the genesis of
germ cell aneuploidy. Earlier reports showed that the

incidence of aneuploidy for specific chromosomes oc-
curred more frequently during female meiosis I than
either meiosis Il or male meiosis (Bond & Chandley
1983, Hassold & Sherman 1993, Hook 1985b). How-
ever, this finding has recently been questioned
(Rosenbusch 2004). Also pertinent are the reports
showing that certain human chromosomes are more
susceptible to missegregation than others (Hassold
1985, Hassold & Hunt 2001, Hassold ef al. 1984, Lam-
son & Hook 1980, Nicolaidis & Petersen 1998). Such
variability among chromosomes requires prudence
when only specific chromosomes (instead of the entire
complement) are used to estimate the incidence of ane-
uploidy.

Another significant factor for consideration is
the sexual dimorphism that exists for both spontaneous
and induced germ cell aneuploidy (Eichenlaub-Ritter
et al. 1996, Pacchierotti et al. 2007). Currently, data
are unavailable from a study that was specifically de-
signed to evaluate gender differences for mammalian
germ cell aneuploidy. Other distinctive features of
meiosis include the influence of neighboring somatic
cells on germ cell differentiation and entry into meio-
sis (Geijsen et al. 2004, Toyooka et al. 2003) and the
intrinsic sexual dimorphism between oogenesis and
spermatogenesis (Handel & Sun 2005, Hodges et al.
2001). Thus, the fundamental distinctions between
oogenesis and spermatogenesis, the differential sus-
ceptibility among chromosomes, the differences be-
tween mitosis and meiosis, and the numerous potential
mechanisms demonstrate the complexity of studying
aneuploidy.

Although it is not surprising that a unique pre-
cept explaining the etiology of aneuploidy has been
adopted, it is now generally accepted that both nondis-
junction and PCS represent primary events that lead to
human aneuploidy (Anahory ef al. 2003, Angell 1991,
Angell et al. 1994, Pellestor et al. 2006, Wolstenholme
& Angell 2000). Moreover, it appears that aneuploidy
more often results from PCS of sister chromatids than
from nondisjunction of whole chromosomes (Plachot
2003, Rosenbusch 2004). Additionally, variation has
been shown to exist among specific chromosomes for
the probabilities of both PCS and nondisjunction
(Eichenlaub-Ritter 2003, Pellestor et al. 2003, Sun et
al. 2000).

Early germ cell studies concentrated on the
ability of various chemicals (mainly those that dam-
aged microtubules) to induce aneuploidy (Adler 1990,
1993, Allen et al. 1986, Eichenlaub-Ritter 1996, Mail-
hes 1995, Mailhes et al. 1986, Miller & Adler 1992).
Other investigations involved assay development and
validation (Pacchierotti 1988, Mailhes & Marchetti,
1994, Eastmond et al. 1995, Parry et al. 1995) and
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gender differences (Eichenlaub-Ritter 1996, Ei-
chenlaub-Ritter et al. 1996, Pacchierotti et al. 2007,
Wyrobek et al. 1996). Based on the results from some
of these studies, a broad-working hypothesis emerged.
Several investigators proposed that endogenous-and
exogenous-induced perturbations during the temporal
sequence of oocyte maturation (OM) predispose oo-
cytes to aneuploidy (Eichenlaub-Ritter 1993, Hans-
mann & Pabst, 1992, Mailhes & Marchetti 1994a).
This proposal suggested that an induced temporal dis-
array (usually detected as a transient delay during
metaphase I) among the cellular organelles and bio-
chemical reactions controlling OM increased the prob-
ability of aneuploidy.

Although considerable data have shown that a
chemically-induced delay during OM is often associ-
ated with chromosome missegregation, exceptions can
be found. Phorbol 12,13-dibutyrate (Eichenlaub-Ritter
1993), colchicine (Mailhes & Yuan 1987), vinblastine
sulfate (Mailhes & Marchetti 1994a, Russo & Pac-
chierotti 1988), griseofulvin (Marchetti & Mailhes
1995, Mailhes ef al. 1993, Tiveron et al. 1992) induced
both meiotic delay and aneuploidy. Conversely, isobu-
tyl-1-methylxanthine and forskolin caused meiotic de-
lay, but not aneuploidy (Eichenlaub-Ritter 1993),
while etoposide treatment resulted in aneuploidy with-
out meiotic delay (Mailhes et al. 1994, Tateno & Ka-
miguchi 2001). Consistency among the results from
different studies regarding chemically-induced meiotic
delay and oocyte aneuploidy cannot necessarily be ex-
pected due to: different experimental protocols, expo-
sure of cells to compounds with diverse and often mul-
tiple modes of action, and the numerous potential
mechanisms of aneuploidy (Mailhes 1995, Pacchierotti
& Ranaldi 2006).

More recent studies have combined immuno-
cytochemical techniques with cytogenetic analyses to
affirm a positive correlation between oocyte meiotic
spindle abnormalities and aneuploidy (Eichenlaub
Ritter et al. 1996, Mailhes et al. 1999). Additional
studies employing small molecule, cell-permeable in-
hibitors of specific biochemical reactions during cell
division showed that the proteasome and calpain in-
hibitor MG-132 (Mailhes et al. 2002), the protein
phosphatase 1 and 2A inhibitor okadaic acid (Mailhes
et al. 2003a), and the Eg5 kinesin inhibitor monastrol
(Mailhes et al. 2004) induced aneuploidy in mouse
oocytes, while the tyrosine inhibitor vanadate resulted
in spontaneous oocyte activation (Mailhes et al.
2003b).

Considerable research is being devoted to un-
raveling the molecular events underlying chromosome
segregation, mainly in non-mammalian somatic cells
(Lee & Orr-Weaver 2001, Nasmyth 2001, Uhlmann

2003a). The complexity of understanding the multifac-
eted events comprising chromosome segregation is
illustrated by the approximately 5,000 yeast genes in-
volved with chromosome segregation; many of these
yeast genes have also been found in humans (Yanagida
2005). Chromosome segregation requires the tempo-
rally-coordinated interaction among: topoisomerases,
chiasmata resolution, chromatin condensation, protein
kinase and phosphatase reactions, microtubule kinet-
ics, centrosomes, kinetochore-microtubule attachment
and bipolar tension, kinetochores and their associated
proteins, anaphase promoting complex, proteasomes,
and cohesion, securin, and separin proteins. Although
these events generally transcend among species and
cell types (Yanagida 2005), little is actually known
about the molecular mechanisms of chromosome seg-
regation in mammalian oocytes (Collins & Crosignani
2005).

Thus, it emerges that the current state of mam-
malian germ cell aneuploidy research is mainly de-
scriptive with little information about the underlying
molecular mechanisms. It seems that the status of ane-
uploidy research can be summarized by an earlier
statement, “The fact is that we are really not very
much nearer today to pinning down the responsible
mechanisms than we were twenty years ago when the
human aneuploid conditions were first identi-
fied” (Bond & Chandley 1983).

QOocyte maturation

Disarray among the numerous events that occur during
OM may lead to faulty chromosome segregation.
Mammalian oogenesis is controlled by FSH, LH,
autocrine and paracrine signaling, and unique growth
factors (Anderiesz et al. 2000, Hiller 2001). Meiosis
begins in the fetal ovary and is later arrested postpar-
tum at the diplotene/ dictyate stage during meiosis 1.
Unless human oocytes undergo atresia, they remain in
diplotene for decades until meiosis resumes prior to
ovulation. Following proper hormonal stimulation,
oocytes undergo the transition from diplotene to meta-
phase II (MII). This transition represents OM and in-
volves nuclear and cytoplasmic remodeling and reduc-
tion to the haploid state (Dekel 1988, Racowsky 1993,
Schultz 1986, Schultz 1988, Schultz ef al. 1983). Upon
completing OM, mammalian oocytes remain in MII
for a limited time period until fertilization, spontane-
ous activation, or atresia. In most mammals, MII oo-
cytes are ovulated and primed for fertilization, which
initiates anaphase II. Among marine invertebrates, am-
phibians, fish, and mammals, species-dependent pro-
tein modifications by kinases and phosphatases ac-
count for differences in the initiation and the orderly
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temporal sequence of events during OM (Yamashita et
al. 2000).

The intraoocyte titer of cyclic adenosine mo-
nophosphate (cAMP) influences the initiation of mam-
malian OM. Elevated levels of cAMP favor cAMP-
dependent kinase activity and the retention of oocytes
in the diplotene/dictyate stage of meiotic prophase.
Conversely, low cAMP levels shift the equilibrium
toward cAMP-dependent phosphatase activity, which
is needed for activating maturation promoting factor
(MPF) and the progression of OM (Boernslaeger ef al.
1986, Dekel 1988, Dekel 2005, Downs et al. 1989,
Racowsky 1993, Schultz 1988, Schultz et al. 1983).
MPF is composed of a 34 kDa catalytic subunit
(p34°*?) that exhibits serine-threonine kinase activity
and a 45 kDa cyclin B regulatory subunit. In addition
to low cAMP levels, MPF activation also requires that
p34°*2 be dephosphorylated at the tyrosine 15 residue
and coupled with cyclin B. Conversely, tyrosine phos-
phorylation deactivates MPF (Dunphy & Kumagai
1991, Gautier et al. 1991, Strausfeld et al. 1991). MPF
activity oscillates; it is highest during metaphase and
lowest during anaphase (Arion et al. 1988, Draetta &
Beach 1988), fertilization (Choi ef al. 1991, Collas et
al. 1993, Fulka et al. 1992), and partheneogenesis
(Barnes et al. 1993, Collas et al. 1993, Kikuchi et al.
1995).

Besides MPF, other kinases and phosphatases
also play significant roles during OM (Swain & Smith
2007). Mitogen-activated protein kinases (MAPKSs)
represent serine-threonine protein kinases that phos-
phorylate many of the same sites as active MPF (Fan
& Sun 2004, Lee et al. 2000, Murray 1998, Takenaka
et al. 1998). MAPKs mediate intracellular signal trans-
mission in response to external stimuli, participate in
assembling the first meiotic spindle, and prevent ro-
dent oocytes from entering interphase during the inter-
val between meiosis I and II (Gordo ef al. 2001, Soba-
jima et al. 1993, Verlhac et al. 1994). Unlike MPF,
MAPK activity remains high throughout OM.

Mos, the c-mos protooncogene product, repre-
sents another serine-threonine kinase that is active dur-
ing OM (Paules ef al. 1989, Sagata 1997, Singh & Ar-
linhgaus 1997). It helps activate the MAPK pathway
(Dekel 1996) and functions as a cytostatic factor by
preventing oocytes from prematurely exiting MII
(Hashimoto 1996, Sagata 1996). Oocytes from c-mos
deficient mice fail to arrest at MII and subsequently
undergo spontancous partheneogenic  activation
(Colledge et al. 1994, Hashimoto 1996, Hashimoto et
al. 1994). In addition to their roles during OM, the
kinases MPF, MAPKs, and Mos also have essential
roles during the SAC, the anaphase promoting com-
plex/cyclosome (APC), and the metaphase-anaphase

transition (MAT) (Dekel 1996, Dorée et al. 1995,
Hyman & Mitchison 1991, Karsenti 1991, Murray
1998).

Correct temporal and synchronous interactions
between specific enzymes and their target compounds
are required for OM and the MAT, and faulty kinase
and phosphatase activities have been shown to lead to
downstream errors resulting in chromosome missegre-
gation. Based on their antagonistic effects, relative to
the degree of tyrosine p34°®* phosphorylation, unique
kinase and phosphatase inhibitors have the potential
for altering the rate of OM and for inducing spindle
defects and aneuploidy in rodent oocytes (Jesus et al.
1991). Okadaic acid (OA) specifically inhibits the pro-
tein phosphatases 1 (PP1) and 2A (PP2A) that dephos-
phorylate serine and threonine residues (Cohen et al.
1990, Schonthal 1992). Following OA treatment of
mouse oocytes and one-cell zygotes, hyperphosphory-
lation was noted in conjunction with abnormalities
involving spindle fibers, multipolar spindles, kineto-
chores, and chromosome alignment (De Pennart et al.
1993, Schwartz & Schultz 1991, Vandre & Willis
1992, Zernicka-Goetz et al. 1993). Also, elevated fre-
quencies of PCS and aneuploidy were found in mouse
oocytes exposed to OA (Mailhes ef al. 2003a). These
effects may have been influenced by OA-induced hy-
perphosphorylation of microtubule organizing centers
and microtubule-associated proteins (MAPs)
(Schwartz & Schultz 1991, Vandre and Willis 1992)
and that hyperphosphorylated MAPs have a reduced
affinity for microtubules (Zernicka-Goetz et al. 1993).

Furthermore, the kinase inhibitor 6-
dimethylaminopurine  (6-DMAP) disrupts 34
kinase and MAPK activities and prevents meiotic pro-
gression of mouse oocytes (Rime et al. 1989, Szollosi
et al. 1991, 1993). Protein phosphorylation and germi-
nal vesicle breakdown (GVBD) were repressed when
dictyate mouse oocytes were exposed to 6-DMAP
prior to (GVBD); conversely, expulsion of the first
polar body was inhibited when oocytes were exposed
after GVBD (Rime et al. 1989). Other data showed
that 6-DMAP inhibited protein phosphorylation in ac-
tivated mouse MII oocytes and resulted in premature
disappearance of phosphorylated proteins coupled with
abnormalities involving polar body extrusion and pro-
nuclei formation (Szollosi et al. 1993). Additionally,
the pattern of protein dephosphorylation events noted
in postovulatory and in vitro aged oocytes was corre-
lated with increased frequencies of spontaneous oocyte
activation and PCS (Angell 1994, Dailey et al. 1996).

A selected list of compounds associated with
the metaphase-anaphase transition (MAT) during mito-
sis and meiosis and their general function is presented
in Tables 1A and B. Such a listing is non-
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comprehensive and will certainly be modified and ex-
panded as additional data become available.

The metaphase-anaphase transition (MAT)
during mitosis and meiosis

Prior to the MAT and chromosome segregation, nu-
merous events require coordination. These include:
chromatin condensation, microtubule polymerization
and their capture by kinetochores, correction of errone-
ous microtubule-kinetochore interactions, generation
of microtubule-kinetochore tension, formation of a
stable bipolar spindle, satisfaction of the spindle as-
sembly checkpoint, removal of linkages between sister
chromatid arms, and temporally-coordinated removal
of centromeric cohesion proteins.

Although chromosome segregation during
meiosis appears to largely depend on mechanisms
analogous to those of mitosis, both general cell-cycle
regulators and unique proteins have been identified
during meiosis (Nasmyth 2001). Three major modifi-
cations of the mitotic machinery occur during meiosis.
First, synapsis and recombination (chiasmata forma-
tion) occur between homologues prior to anaphase .
Second, the two sister chromatids of each chromosome
must segregate syntelically while the homologues seg-
regate amphitelically at anaphase 1. Third, the cohesion
between sister chromatid centromeres must remain
intact until anaphase II onset in order for sister chro-
matids to segregate amphitelically.

Before discussing the cytologic and biochemi-
cal changes reported in aged oocytes and their effect
on chromosome segregation, an overview of the physi-
cal and chemical linkages between chromosomes, ki-
netochore-microtubule interactions, the spindle check-
point assembly complex, and the metaphase-anaphase

Table 1A. Selected regulators of mitosis and meiosis.

transition is presented.

Resolution of DNA catenations, chromatin conden-
sation, and removal of cohesion arm proteins
Following DNA replication, sister chromatids are
linked by DNA double-strand catenations and cohe-
sion proteins. These physical and chemical linkages
help prevent precocious separation prior to anaphase
onset, which can result in aneuploidy. However, these
linkages must be timely removed so that sister chro-
matids orient syntelically at meiotic anaphase I and
undergo amphitelic orientation during meiotic ana-
phase II and mitotic anaphase. Most of the DNA cate-
nations on chromosome arms are lost prior to pro-
phase; whereas, the majority of chromosome arm co-
hesin proteins are removed during prophase. However,
it is essential that centromeric catenations and cohe-
sions remain intact until correct kinetochore-
microtubule attachment and tension have been at-
tained. Otherwise, premature loss of centromeric cohe-
sion inevitably predisposes cells to abnormal chromo-
some segregation.

Abnormal function of proteins required for
establishing and maintaining the physical linkages be-
tween sister chromatids may result in aneuploidy and
apoptosis. The Spoll protein helps initiate meiotic
recombination by generating DNA double-strand
breaks, and disruption of Spoll activity in mouse
spermatocytes and oocytes resulted in synaptic-
deficient germ cells and apoptosis (Baudat et al. 2000,
Romanienko et al. 2000). Also, the synaptonemal
complex protein 3 (Sycp3) helps maintain the struc-
tural integrity of meiotic chromosome axes. Mutant
Sycp3 mammalian oocytes were ineffective in repair-
ing DNA double-strand breaks and exhibited higher
frequencies of aneuploidy (Wang & Hoog 2006).

Cohesion complex subunit proteins
identified during mitosis

Cohesion complex subunit proteins
identified during meiosis

Spindle assembly checkpoint (SAC) proteins

Smel and Sme3 (structural mainte-
nance of chromosomes) — core cohe-
sion complex subunit proteins.

Smecla — replaces mitotic Smcl.

Mad1 (mitotic-arrest deficient) — helps recruit Mad2
to kinetochores that lack tension and attachment.
Forms a complex with Cdc20, Mad2, and Mad3.

Scel/Rad21/Med1 (sister chromatid
cohesion) — cleaved by separase at
mitotic anaphase onset.

Smclp — replaces mitotic Smc3.

Mad2 - forms a complex with Cdc20, Madl, and
Mad3 and inhibits APC“**" activity.

Sce3 (SA1/STAGI1, SA2/STAG2) —
phosphorylated by Aurora B and Plk1
kinases.

STAGS3 — replaces mitotic Scc3.

Mad3/BubR1 — helps recruit Madl and Mad2 to
kinetochores that lack attachment and tension; forms
a complex with Cdc20, Madl, Mad2, and Bub3.

Scc2 and Scc4 — enhance the binding
of Sccl and Scc3 to kinetochores that
lack attachment and tension.

Rec8 — replaces mitotic Sccl.

Bubl1 (budding inhibited by benzimidazole) — a serine
-threonine protein kinase that binds with Bub3, Madl,
Mad2, Mad3, and CenP-E and helps recruit Shugo-
shin proteins to kinetochores.

Bub2/Mpsl — helps regulate APC*™ mitotic exit,
chromosome replication, and cytokinesis.

Bub3 - binds with Bub1 and Mad3 and helps regulate
APC activity.
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Table 1B (continued from 1A). Selected regulators of mitosis and meiosis.

Other compounds

Function

APC/C (anaphase promoting

A 20S multi-subunit ligase that ubiquinates specific proteins targeted for proteolysis by proteasomes.
APC®? targets securin for proteolysis at the MAT; whereas, APC*™ targets mitotic cyclins and other

complex/cyclosome) substrates for degradation at mitotic exit. The cdhl protein activates the APC from late anaphase through
Gl.
Astrin A microtubule and kinetochore protein that has roles involving sister chromatid adhesion, centrosome

integrity, and separase activity.

Aurora B kinase-Survivin-
Inner Centromeric Protein-
Borelin

A chromosome passenger protein complex with multiple roles: recruits SAC proteins and CenP-E to kine-
tochores lacking tension, reduces the affinity of Sccl and Scc3 to chromatin via phosphorylation, helps
coordinate correct kinetochore-microtubule attachments, and cytokinesis.

Cdc20 (cell division cycle 20)

Helps activate the APC when not bound by SAC proteins, recruits substrates to the APC, and forms a
complex with Mad2, Mad3, and Bub3.

Cdks (Cyclin-dependent
kinases)

Enzymes composed of a kinase subunit and an activating cyclin subunit. Cdks are needed for kinase ac-
tivity.

CenP-E (centromeric protein
E)

A motor protein that facilitates kinetochore-microtubule stabilization, binding of SAC proteins to kineto-
chores, and enhanced Mad3 activity.

Dynein/Dynactin

A microtubule motor protein required for the removal of the Rod-Zw10-Zwilch complex, Madl, Mad2,
and Mad3 from properly aligned kinetochores.

Kinesin

A microtubule motor protein.

MAPK/Mps1 (mitogen-
activated protein kinase)

A serine-threonine kinase that helps recruit CenP-E to kinetochores. It also interacts with Mos protein for
MPF activation.

MCAK/Kip 2-3 (microtubule
centromere-associated kinesin)

Depolarizes microtubules and helps correct aberrant kinetochore-microtubule attachments.

Monopolin/Mam1/CdcPlk

Facilitates amphitelic orientation of homologues and syntelic orientation of sister chromatids during
meiosis .

Mos

The protein product of the c-mos proto-oncogene. Mos is an active component of a cytostatic factor. In
conjunction with cyclin-dependent kinase 2, Mos is required for the metaphase II arrest of mature mouse
oocytes and for activating MAPK.

MPF (maturation promoting
factor)

A protein kinase comprising p34°/Cdk1 and cyclin B. MPF phosphorylates and helps regulate chromo-
some condensation, nuclear envelope breakdown, and spindle formation.

Op18/Stathmin (oncoprotein
18)

A protein that destabilizes microtubules; it is inhibited by phosphorylation.

P31/Cmt2

A protein involved with changing the stereo-configuration of Mad2.

PIk1 (Polo-like kinase 1)

A serine-threonine kinase that phosphorylates Sccl, Scc3, and Rec8 and reduces their affinity to chromo-
some arms.

PP2A (protein phosphatase 2A)

Dephosphorylates Sgo1 and supports Rec8 maintenance.

Proteasomes Proteinase complexes that degrade intracellular ubiquinated compounds.
Rod-Zw10-Zwilch A protein complex that helps recruit dynein, Mad1, and Mad?2 to unaligned kinetochores.
Securin/Pds1/Cut2p An APC substrate that binds to and inhibits separase activity.

A protease that is inactive when bound by securin. However, upon securin proteolysis, separase is free to
Separase/Esp1 cleave centromeric Sccl cohesions at mitotic anaphase onset, Rec8 at chromosome arms at meiotic ana-

phase I onset, and centromeric Rec8 at meiotic anaphase II onset.

Shugoshins (Sgol & Sgo2)

Sgol is a conserved eukaryotic kinetochore protein that protects centromeric Rec8 from separase activity
during meiosis I, but not during meiosis II. Sgol enhances dephosphorylation and cohesion removal by
recruiting PP2A to kinetochores. Shugoshins also have roles in chromosome congression, kinetochore-
microtubule attachment, and syntelic orientation of sister chromatids during meiotic anaphase I

The Saccharomyces cervisiae Slk19p gene product is needed for proper chromosome segregation during

Sik19p meiosis [.

Sororin An APC protein substrate that interacts with Shugoshins to facilitate cohesion binding to chromatin.

Spindly A protein that helps inactivate the APC and participates with dynactin in recruiting dynein to kinetocho-
res.

Spoll Helps initiate meiotic recombination.

Sycp3 Helps maintain the structural integrity of meiotic chromosome axes.

Topoisomerase II (Topo II)

An enzyme that disrupts intercalated loops of DNA and then reanneals the DNA broken ends.

UbcH10

An enzyme that ubiquinates Cdc20. This facilitates the release of Mad2 and BubR1 from Cdc20, inacti-
vates the SAC, and helps activate the APC.

Usp44

An enzyme that deubiquinates Cdc20. This enhances the retention of Mad2 by Cdc20, promotes SAC
activity, and inhibits APC activation.




Besides Spoll and Sycp3, other proteins also
participate in resolving chiasmata, condensing chroma-
tin, and facilitating chromatid cohesion and separation.
Topoisomerase II (topo II) disrupts the intercalated
loops on adjacent chromatids by catalyzing a DNA
double-strand break in one of the sister chromatids.
This enables the other sister chromatid to pass through
the broken ends followed by topo II re-annealing the
broken ends (Champoux 2001, Downes et al. 1991,
Holm et al. 1989, Rose ef al. 1990, Wang 2002). Sister
chromatids remained physically linked and fail to
separate during anaphase in cells lacking topo II activ-
ity (Dinardo et al. 1984). Thus, topo II activity is re-
quired for the transition from prophase to metaphase I
(MI) in mouse spermatocytes (Cobb et al. 1997) and
for proper chromosome segregation in mammalian
somatic cells (Gorbsky 1994), mouse oocytes (Mailhes
et al. 1994), and mouse spermatocytes (Marchetti et al.
2001). Besides topo II, other proteins also help disen-
tangle and condense chromatin. The structural mainte-
nance of chromosome proteins (Smc 2 and Smc4) bind
to chromatid axes and help disentangle and condense
sister chromatids and homologues during prophase and
prometaphase (Hagstrom et al. 2002, Lavoie et al.
2002, Ono et al. 2004).

In addition to the physical linkages between
sister chromatids, highly-conserved, multi-subunit pro-
tein cohesin complexes adhere to eukaryotic chromo-
somes and help conjoin sister chromatids and homo-
logues (Marston & Amon 2004, Nasmyth & Schleiffer
2004). Some of the cohesin subunits differ between
mitotic and meiotic cells (van Heemst & Heyting
2000). Such distinctions may reflect the need for main-
taining cohesion during meiotic recombination and the
requirement for sister chromatids to undergo syntelic
segregation during meiotic Al and amphitelic segrega-
tion during AIl (Revenkova & Jessberger 2005). Eu-
karyotic mitotic cells encode homologs of the Sccl/
Rad21, Scc3 (SA1/STAGI, SA2/STAG2), Smcl, and
Smc3 cohesion protein subunits (Haering & Nasmyth
2003, Parra et al. 2004, Prieto et al. 2002). Both Sccl
and Scc3 enhance cohesion by binding to numerous
sites on chromosomes, while the core subunit proteins
Smcl and Smc3 are needed for both sister chromo-
some cohesion and DNA recombination (Eijpe et al.
2000, Haering et al. 2002, Lavoie et al. 2002, Petronc-
zki et al. 2003). Scc2 and Scc4 represent a separate
protein complex in yeast that facilitates the binding of
cohesion proteins to centromeres and chromosome
arms (Ciosk et al. 2000). The following differences in
cohesion subunits have been found in meiotic cells:
Rec8 replaces Sccl in both budding yeast (Klein et al.
1999, Watanabe & Kitajima 2005) and mammals
(Eijpe et al. 2003, Parisi et al. 1999); STAG3 replaces
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the Scc3 subunits SA1 and SA2 in mammals (Prieto et
al. 2001, 2004); Smclo and Smclf replace Smcl
(Revenkova ef al. 2001); and homologs for Smc3 have
not been identified.

Cohesin proteins must remain located on cen-
tromeres until anaphase onset. Otherwise, early or non-
removal can result in PCS or nondisjunction, respec-
tively. The retention and removal of cohesion proteins
require the activities of unique kinase, phosphatase,
separase, and Shugoshin proteins. During mitotic pro-
phase-prometaphase and meiotic MII, most of the arm
cohesins are lost following phosphorylation of the
Sccl and Sce3 cohesin subunits by Aurora B kinase
and Polo-like kinases (PLKs) (Alexandru et al. 2001,
Clyne et al. 2003, Hauf ef al. 2005, Lee & Amon
2003, Losada et al. 2002, Sumara et al. 2002, Yu &
Koshland 2005). On the other hand, loss of centro-
meric cohesin is mediated by separase cleavage of
Sccl during mitotic anaphase onset (Uhlmann et al.
2000a, Uhlmann 2001, Waizenegger et al. 2000). Ad-
ditionally, phosphorylation by PLKs also enhances the
removal of centromeric cohesins (Clarke et al. 2005,
Dai et al. 2003, Goldstein 1980, Lee et al. 2005). Al-
though PLK phosphorylation has been detected during
meiosis in female mice and the first zygotic division,
its multi-faceted role requires additional investigation
(Pahlavan et al. 2000). As will be mentioned later,
both Aurora B kinase and PLKs have additional func-
tions during cell division.

During meiosis I, DNA catenations and chro-
mosome arm cohesins must be removed prior to ana-
phase so that homologues segregate amphitelically and
sister chromatids segregate syntelically. Such removal
of the meiosis-specific Rec8 cohesin protein on chro-
mosome arms during meiosis [ is facilitated by
separase. However, it is essential that centromeric
Rec8 remain intact between sister chromatids during
anaphase I so that they can undergo syntelic orienta-
tion (Pasierbek et al. 2001, Siomos et al. 2001). Rec8
displays a similar pattern of localization in mammalian
oocytes and spermatocytes and yeast; it is lost from
chromosome arms during the MI-AI transition and
from sister centromeres at the onset of All (Lee ef al.
2003, 20006).

Mammalian and yeast cells that lack cohesin
proteins exhibited elevated frequencies of PCS and
chromosome missegregation (Hoque & Ishikawa 2002,
Michaelis et al. 1997, Sonoda et al. 2001, Tanaka et al.
2000). The Saccharomyces cerevisiae Slk19p gene is
required for proper chromosome segregation during
meiosis I. Slk19p mutants failed to maintain Rec8 at
centromeres during anaphase I and displayed elevated
levels of PCS and improper amphitelic segregation of
sister chromatids (Kamieniecki et al. 2000). Phos-
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phorylation of Rec8 facilitates its cleavage; whereas,
dephosphorylation of Rec 8 by PP2A maintains centro-
meric cohesion during meiosis I (Kitajima et al. 20006,
Riedel et al. 2006). Okadaic acid (OA) functions as a
phosphatase 1 and 2A inhibitor, and exposure of
mouse oocytes to OA resulted in elevated frequencies
of PCS in both MI and MII oocytes and in aneuploid
MII oocytes. The higher frequencies of PCS noted in

oocytes was proposed to result from an OA-induced
shift in the kinase-phosphatase equilibrium that fa-
vored enhanced kinase activity (Mailhes et al. 2003a).

Centromeric Rec8 must be protected from
separase activity during meiosis I in order to facilitate
syntelic orientation of sister chromatids during Al
This is enhanced by a group of evolutionarily-
conserved eukaryotic Shugoshin (Sgo) proteins and

Amphitelic - Proper attachment of homologous chromosomes to a bipolar

spindle and their orientation to opposite poles. Each daughter cell is
expected to receive one chromosome (composed of two chromatids)
resulting in a haploid state.

Syntelic - Improper attachment of both chromosomes to a monoastral
spindle and their orientation to the same pole. One daughter cell is
expected to receive both chromosomes (hyperhaploid), while the other cell
will be minus a chromosome (hypohaploid).

)

Monotelic - Improper attachment of one chromosome to a monoastral
spindle and its orientation to one pole. The other chromosome is neither
attached nor oriented. One daughter cell is expected to receive one
chromosome (haploid), while the other daughter cell will be minus a
chromosome (hypohaploid).

Merotelic - Improper attchment of one chromosome to a bipolar spindle

and its non-orientation. The other chromosome is attached to a monoastral
spindle and oriented to one pole. Onne daughter cell is expected to receive

one chromosome (haploid) while the fate of the other chromosome is

uncertain. Merotelic attachments are believed not to activate the SAC and
may be corrected prior to anaphase onset (Cimini et al., 2004; Cimini,
2007). Also, anaphase can still occur in the presence of unattached

kinetochores,

microtubule disruption, and abnormal chromosome

orientation (Rieder and Palazzo, 1992; Riederetal., 1994).

Figure 1. Kinetochore-microtubule attachments and probable outcomes during meiosis 1.



their orthologs (Katis et al. 2004a, Kitajima et al.
2004, Salic et al. 2004). Sgol in budding yeast
(Kitajima et al. 2004) and its paralogue Sgo2 in fission
yeast (Rabitsch et al. 2004) were initially identified
and require Bubl for proper centromeric localization
(Kitajima et al. 2004). Subsequently, human and
mouse Sgol and Sgo2 proteins were recognized
(McGuinness et al. 2005, Tang et al. 2004, Watanabe
& Kitajima 2005). During mitosis and meiosis in
higher eukaryotes, Sgol helps maintain sister centro-
mere cohesion by protecting centromeric Rec 8 from
separase until sister chromatids undergo amphitelic
segregation at anaphase II onset (Goulding & Earn-
shaw 2005, Kitajima et al. 2004, Marston et al. 2004,
Tang et al. 2004, Watanabe & Kitajima 2005). In bud-
ding yeast, Sgoldisappears during anaphase I
(Kitajima et al. 2004, Rabitsch et al. 2004); whereas,
fission yeast Sgo2 persists until meiosis II (Katis et al.
2004a, Kitajima et al. 2004). Sgo2 in fission yeast
represents a paralogue of Sgol and is required for
chromosome congression at metaphase, proper kineto-
chore-microtubule attachment, and syntelic orientation
of sister chromatids during Al (Kitajima et al. 2004,
Rabitsch et al. 2004). Depletion of either Sgol (Wang
& Dai 2005) or Sgo2 (Kitajima et al. 2004, Rabitsch et
al. 2004) during meiosis I led to PCS and chromosome
missegregation, and knock-out of Sgol in fission yeast
resulted in chromosome missegregation (Gregan ef al.
2005).

PP2A colocalizes with centromeric Sgol in
human mitotic and meiotic cells. This enhances effi-
cient PP2A dephosphorylation of Rec8, which renders
it resistant to subsequent phosphorylation and cleav-
age. Furthermore, reduced PP2A activity resulted in
loss of centromeric cohesion during mitosis and mei-
otic anaphase I accompanied by random sister chro-
matid segregation during meiotic anaphase Il
(Kitajima et al. 2006, Riedel et al. 2006, Tang et al.
2006). A human shugoshin-like protein (possibly
orthologous to yeast Sgol) localized to HeLa cell cen-
tromeres during prophase prevented phosphorylation
of the Scc3 cohesin subunit. This protein normally dis-
appears at anaphase onset, and its depletion by RNAi
resulted in PCS (McGuinness et al. 2005).

Kinetochore-microtubule interaction, correction of
faulty attachments, generation of tension and stabi-
lization, and biorientation

Kinetochores help regulate chromosome segregation
during mitosis and meiosis by mediating three main
functions: attaching chromosomes to microtubules,
facilitating microtubule dynamics essential for chro-
mosome movement, and providing the site for spindle
checkpoint activity. Kinetochores may initially capture
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microtubules by four different modes (Biggins &
Walczak 2003, Cinini et al. 2001): (1) Amphitelic —
sister kinetochores orientated to opposite poles of a
bipolar spindle, (2) Syntelic — both kinetochores of sis-
ter chromatids attached to a monastral spindle, (3)
Monotelic — only one kinetochore is orientated to a
pole while the other is unattached, and (4) Merotelic —
one kinetochore is attached to both poles (Figures 1 &
2). During metaphase of mitosis and meiosis II, am-
phitelic orientation of sister chromatids is needed;
whereas during meiosis I, syntelic attachment of sister
chromatids and amphitelic attachment of homologues
are required. Persistent monotelic and merotelic at-
tachments, if not corrected, can lead to chromosome
missegregation; whereas, merotelic attachments are not
detected by the spindle checkpoint (Cimini 2007,
2008, Cimini et al. 2001, 2004, Rieder & Maiato 2004,
Salmon et al. 2005).

Kinetochores contain both constitutive
(structural) proteins (Amor et al. 2004) and transient
(passenger) proteins that help coordinate various
events during mitosis and meiosis (Duesbery et al.
1997, Vagnarelli & Earnshaw 2004). The constitutive
centromeric proteins (CENP-A, B, C, D) are involved
with: microtubule capture, correcting aberrant interac-
tions, binding of spindle checkpoint proteins, and chro-
mosome congression to the metaphase plate (Craig et
al. 1999, Rieder & Salmon 1998, Simerly et al. 1990,
Vagnarelli & Earnshaw 2004). Whereas, the transient
proteins reside in the nucleus during G2, associate with
chromosomes during prophase, localize to centromeres
during metaphase, and transfer to the spindle at ana-
phase onset (Earnshaw & Cooke 1991).

The Aurora A and Aurora B serine-threonine
protein kinases help support mitotic spindle assembly
by phosphorylating the structural and motor proteins
that are essential for spindle assembly and anaphase
onset (Giet et al. 2005, Meraldi et al. 2004). The biori-
entation of homologues during meiotic MI and that of
sister chromatids during mitosis and meiotic MII re-
sembles a state of equilibrium between sister chro-
matid cohesion and microtubule-kinetochore tension
(Miyazaki & Orr-Weaver 1994, Tanaka et al. 2000,
Toth ef al. 1999). Plkl and Aurora B kinases are also
involved with a fundamental function that decreases
the incidence of chromosome missegregation. These
kinases help correct aberrant microtubule-kinetochore
attachments by generating kinetochore-microtubule
tension (Ahonen et al. 2005, Stern 2002, Tanaka et al.
2002). After proper correct microtubule-kinetochore
attachment and tension have been attained, micro-
tubule polymerization-depolymerization is minimized
while centromeres bi-orient and align on the meta-
phase plate. In addition to Aurora B kinase, the de-
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polymerase activity of mitotic centromere associated
kinesin (MCAK) helps coordinate the release of
merotelic kinetochore-microtubule attachments (Kallio
et al. 2002, Knowlton et al. 2006). Also, the SPO13
protein and the monopolin protein complex found dur-
ing meiosis I in fission yeast facilitate syntelic orienta-
tion of sister chromatids (Katis et al. 2004b, Lee et al.
2004).

The Aurora B-inner-centromeric protein
(INCENP)-Survivin-Plk1-Borealin transient protein
kinase complex is involved with several functions in-
volving chromosome segregation and cytokinesis;
these include: (1) chromatin decondensation, (2) re-
ducing the affinity of Sccl for chromatin at chromo-
some arms, (3) generating tension at kinetochores, (4)
organizing a bipolar spindle, (5) targeting SAC pro-
teins to kinetochores, (6) initiating cytokinesis, (7) in-
hibiting the APC, (8) sensing and correcting abnormal
microtubule-kinetochore attachments, and (9) influenc-
ing spindle geometry by phosphorylating MCAK
(Adams et al. 2001a, b, Dewar et al. 2004, Shang et al.
2003, Tanaka et al. 2002, Vagnarelli & Earnshaw
2004). INCENP, Survivin, and PIk1 are needed for the
proper kinetochore localization of Aurora B and for
correcting merotelic microtubule-kinetochore attach-
ments (Bolton ef al. 2002, Ditchfield et al. 2003, Goto
et al. 2006, Tong et al. 2002). Survivin also has impor-
tant roles during spindle checkpoint signaling and in
correcting abnormal kinetochore-spindle fiber attach-
ments (Carvalho et al. 2003, Hwang et al. 1998, John-
son et al. 2004, Lampson et al. 2004, Lens & Medema
2003, Taylor et al. 2001, 2004). Aurora B kinase activ-
ity helps to destabilize syntelic attachments of sister
chromatids during meiosis II and mitosis; this en-
hances the re-formation of correct amphitelic orienta-
tion (Hauf et al. 2003, Tanaka et al. 2002). Further-
more, overexpression of a stable form of Aurora B in
mammalian somatic cells led to aneuploidy (Nguyen et
al. 2005).

Spindle assembly checkpoint (SAC) protein com-
plex and correction of faulty Kinetochore-
microtubule attachments

Chromosome segregation represents an irreversible
event; orientation errors cannot be rectified after ana-
phase onset. In order to reduce the risk of missegrega-
tion, it is essential that a bipolar spindle be formed fol-
lowing correct microtubule-kinetochore attachment
and tension. This is not left to chance. A transient
mechanico-chemo surveillance mechanism or spindle-
assembly checkpoint (SAC) protein complex helps
insure that proper chromosome alignment and kineto-
chore-microtubule tension are attained prior to ana-
phase onset. However, the SAC is not foolproof; it can

be overridden. Anaphase can still occur following ex-
posure of cells to microtubule disrupting drugs, in the
presence of abnormal spindle bipolarity, and in the
presence of unattached kinetochores and abnormal
chromosome orientation (Andreassen et al. 1996,
Rieder & Palazzo 1992, Rieder ef al. 1994).

Most SAC data have been derived from non-
mammalian somatic cells, and although differences
between mitotic and meiotic SAC proteins have been
found, it appears that the basic molecular pathways are
similar between mitosis and meiosis and among spe-
cies (Dai et al. 2003a, Lee & Orr-Weaver 2001, Nas-
myth 2001, Uhlmann 2001, 2003a). Three broad
groups of interacting proteins comprise the SAC: (1)
transport/motor proteins [dynein, Zw10, Rod] that con-
vey unique SAC proteins from the cytoplasm to kine-
tochores, microtubules, and spindle poles; (2) binding
proteins [Aurora B, MAPK, Mpsl, Bubl, CENP-E]
that bind certain SAC proteins to kinetochores; and (3)
SAC proteins [Madl, Mad2, Mad3/BubR1,Bubl,
Bub3,] that transiently localize to kinetochores and
temporally inhibit the MAT.

If defects in the integrity of kinetochore-
spindle tension and attachment are detected, Madl,
Mad2, Mad3/ BubR1, Bubl, and Bub3 transiently as-
sociate with kinetochores by binding to Cdc20 (Fang
2002, Vigneron et al. 2004). Such binding inhibits
APC activity and delays anaphase by blocking the
ubiquination and subsequent proteolysis of securin and
cyclin B by proteasomes (Bharadwaj & Yu 2004,
Howell et al. 2004, Li & Benezra 1996, Luo et al
2000, Musacchio & Hardwick 2002, Nasmyth 2005,
Nicklas 1997, Rieder et al. 1994, Shah et al. 2004,
Sluder & McCollum 2000, Taylor et al. 1998, 2004,
Weiss & Winey 1996, Zhou et al. 2002).

Although less information is available about
SAC proteins in mammalian germ cells relative to
other cell types, several SAC proteins have been iden-
tified in mammalian oocytes. A functional Mad2-
dependent spindle checkpoint was identified during
meiosis in both mouse (Homer et al. 2005a, Tsurumi et
al. 2004, Wassmann et al. 2003) and rat (Zhang et al.
2004) oocytes. Mad2 binds to unattached kinetochores
and is released following proper microtubule-
kinetochore tension and attachment (Homer er al
2005a, Kallio et al. 2000, Ma et al. 2005, Steuerwald
et al. 2005, Wassmann et al. 2003, Zhang et al. 2004,
2005). Madl helps recruit Mad2 to unattached kineto-
chores and was detected in mouse oocytes from the
GV stage to MII (Chen et al. 1998, Chung & Chen
2002, Zhang et al. 2005). In addition to Madl and
Mad2, Mad3/BubR1 activity was also detected in
mouse oocytes (Tsurumi et al. 2004). Lastly, Bubl
was found on kinetochores from GVBD until early Al;
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Amphitelic - Proper attachment of chromatids to a bipolar spindle and
their orientation to opposite poles. Each daughter cell receives one
chromatid.

Syntelic - Improper attachment of both chromatids to a monoastral spindle
and their orientation to the same pole. One daughter cell is expected to
receive both chromatids (hyperhaploid), while the other cell will be minus a
chromatid (hypohaploid).

Monotelic - Improper attachment of one chromatid to a monoastral spindle
and its orientation to one pole. The other chromatid is neither attached nor
oriented. One daughter cell is expected to receive one chromatid (haploid),
while the other daughter cell will be minus a chromatid (hypohaploid).

Merotelic - Improper attachment of one chromatid to a bipolar spindle and
not oriented to either pole. The other chromatid is properly oriented to one
pole. One daughter is expected to receive one chromatid (haploid), while
the fate of the merotelically-oriented chromatid is uncertain.

Figure 2. Kinetochore-microtubule attachments and probable outcomes during meiosis II and mitosis.

then, it disappeared at late Al and re-appeared at MII
(Brunet et al. 2003). Although SAC proteins are re-
quired for checkpoint functions during meiosis I and II
in mouse oocytes, they appear non-essential for main-
taining the cytostatic factor arrest during MII (Tsurumi
et al. 2004).

Defective SAC function can lead to ane-
uploidy and abnormal cell cycle progression in mitotic
and meiotic cells. Diminished Mad2 and Mad3/BubR1
activities resulted in PCS and aneuploidy in mammal-

ian oocytes (Dai et al. 2004) and somatic cells (Michel
et al. 2001), as well as malignant transformation in
human cells (Hanks et al. 2004). Chromosome mis-
segregation followed ablation of Mad2 activity during
budding yeast meiosis I (Shonn et al. 2000), and dele-
tion of one MAD?2 allele led to faulty SAC activity,
PCS, and chromosome missegregation in human can-
cer cells and mouse fibroblasts (Michel et al. 2001).
Also, RNA-interference reduction of Mad2 protein
levels in human somatic cells induced premature cy-
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clin B degradation, abnormal spindles, and cell death
(Michel et al. 2004). Knockout of Mad2 in mouse em-
bryonic cells resulted in aneuploidy and apopotosis
(Dobles et al. 2000). Microinjection of anti-Madl or
anti-Mad2 into GV-stage rodent and pig oocytes in-
duced abnormalities in spindle morphology, chromo-
some alignment, and chromosome segregation (Ma et
al. 2005, Zhang et al. 2004, 2005). Other data from
mouse oocytes showed that depletion of Mad2 protein
during meiosis I resulted in premature loss of securin
proteins and cyclin B and elevated levels of ane-
uploidy; whereas, microinjection of hMad2-GFP
mRNA during meiosis I inhibited homolog segregation
(Homer et al. 2005a). Finally, an excess of Mad2 in
Xenopus oocytes caused in a delay of chromatid segre-
gation during anaphase II (Peter et al. 2001).

Apart from alterations to Mad2, anomalies in
other SAC proteins resulted in cell cycle perturbations
and chromosome missegregation. Partial down regula-
tion of Madl in human somatic cells led to spindle
checkpoint inactivation and aneuploidy (Kienitz et al.
2005). Deletion of the Bubl gene in fission yeast led to
loss of centromeric Rec8 and amphitelic segregation of
sister chromatids during meiosis [ (Bernard et al.
2001); whereas, biallelic mutations of human BUBIB
were associated with aneuploidy and cancer (Hanks et
al. 2004). Knockout of BubR1 alleles in mice resulted
in reduced BubR1 protein expression that was corre-
lated with elevated levels of aneuploidy in fibroblasts,
spermatocytes, and oocytes (Baker et al. 2004).

Other data from mice showed that disruption
of Bub3 led to cytogenetic anomalies and embryonic
lethality (Kalitsis et al. 2000). Exposure of HeLa cells
to 5-10 nM taxol was followed by disassociation of
Mad2 and BubR1 complexes, cell-cycle delay and
chromosome missegregation (Ikui et al. 2005). Earlier
work also showed that the antineoplastic agent taxol
can induce dose-response effects of maturation delay,
spindle defects, and aneuploidy in mouse oocytes and
one-cell zygotes (Mailhes ef al. 1999).

Recent data have shown that oocyte aging is
correlated with altered Mad2 titers and cytogenetic
abnormalities. Postovulatory aging of mouse oocytes
resulted in a time-dependent reduction in the number
of Mad2 transcripts and a concomitant elevation in the
frequencies of PCS and premature anaphase
(Steuerwald et al. 2005). Also, in vitro aging of pig
oocytes led to a reduction of Mad2 expression in con-
junction with abnormal chromosome segregation (Ma
et al. 2005). In human oocytes, hMAD2 was detected
during meiosis 1 (Homer et al. 2005b), and hMAD2
mRNA titers were shown to decrease with advancing
maternal age (Steuerwald et al. 2001). These findings
suggest that altered SAC activity, as detected in oo-

cytes aged in vivo and in vitro, represents one of many
potential molecular mechanisms responsible for the
genesis of aneuploidy.

Removal of centromeric cohesions and the meta-
phase-anaphase transition (MAT)

After proper microtubule-kinetochore tension and at-
tachment has been attained or the SAC over-ridden,
SAC proteins detach from Cdc20. This enables APC
activation - a large protein complex that ubiquinates
specific proteins (cyclin B, Securin, and possibly
Sgol) that are subsequently proteolyzed by protea-
somes (Craig & Choo 2005, Glickman & Ciechanover
2002, Kotani et al. 1999, Salic et al. 2004). Protea-
somes consist of multicatalytic 26S proteases and a
20S central core catalytic subunit bordered by two 19S
components that hydrolyze C-terminal peptide bonds
to acidic, basic, and hydrophobic amino-acid residues
(Coux et al. 1996, Glickman & Ciechanover 2002,
Goldberg 1995). This ubiquination and degradation of
cellular proteins represent a tightly-regulated, tempo-
rally-controlled process that oversees numerous cellu-
lar processes including cell division (Glickman &
Ciechanover 2002).

APC-mediated proteolysis during the somatic
cell cycle depends upon both APC“***and APC™
APC“®jsactive from prometaphase until the MAT;
whereas, APC“™ becomes active during anaphase and
persists until the S phase. Various regulatory pathways
control APC““*and APC™" activities. Phosphoryla-
tion of APC subunits by Cdkl and Plkl facilitate
Cdc20 binding and APC activation (Glover et al. 1998,
Sumara et al. 2004). Conversely, Emil inhibits Cdc20
binding to APC. Prior to mitosis, phosphorylation by
Cdk1 and Cdk2 kinases inactivates Cdhl. However, as
cells exit mitosis following cyclin B proteolysis, Cdhl
is dephosphorylated and APC™ mediates the prote-
olysis of Cdc20 and Plkl (Peters 2002, Zachariae &
Nasmyth 1999). APC“** targets cyclin B for degrada-
tion, which leads to Cdk! inactivation. Also, APC*%*°
activity leads to securin inactivation, which liberates
separase upon satisfaction of the SAC.

Prior to normal chromatid segregation, the
securin proteins, which inhibit separase activity, are
ubiquinated by the APC and subsequently proteolyzed
by proteasomes (Cohen-Fix et al. 1996, Uhlmann et al.
1999). Securin (Pdslp in budding yeast) activity is
abrogated after each meiotic anaphase onset (Salah &
Nasmyth 2000). In human somatic cells, D-box mu-
tants of securin that were not degraded during meta-
phase resulted in chromosome missegregation
(Hagting et al. 2002). This proteolysis of securin liber-
ates the cysteine protease separase, which cleaves cen-
tromeric Sccl during mitotic anaphase onset (Nasmyth



2002, Uhlmann et al. 1999, Waizenegger et al. 2002),
Rec8 from chromosome arms during anaphase I
(Agarwal & Cohen-Fix 2002, Buonomo et al. 2000,
Jallepalli et al. 2001, Uhlmann 2003b), and Rec8 from
centromeres during anaphase II (Waizenegger et al.
2000). Similar to mitosis, both APC and separase ac-
tivities have been shown essential for proteolyzing se-
curin and cyclin B prior to homolog segregation in
mouse oocytes (Herbert ef al. 2003, Terret et al. 2003).

Following inactivation or overriding of the
SAC, the MAT represents a point-of-no-return. The
temporal coordination of the MAT is directed by the
interaction of unique biochemical events (kinases,
phosphatases, proteolysis, topoisomerases, and motor
proteins) with cellular organelles (kinetochores, cen-
tromeres, centrosomes, spindle fibers) (Dorée et al.
1995, Kirsch-Volders et al. 1998). During mitosis, the
positive ends of microtubules are embedded in kineto-
chores and the negative ends are lodged in centro-
somes. In conjunction with motor proteins, chromo-
some movement towards centrosomes arises from de-
polymerization of both the minus and positive ends of
microtubules. Even though the MAT appears straight-
forward from a cytogenetic viewpoint, it is actually a
complex series of events involving the coordination of
independent processes that depend on prior checkpoint
release and APC activation.

Separation of sister chromatids occurs by two
independent processes: removal of cohesins from chro-
mosomes and microtubule-dependent movement of
chromatids to opposite poles. Chromatid arm separa-
tion and centromere separation (anaphase A) are inde-
pendent events with different mechanisms (Rieder &
Salmon 1998, Sluder & Rieder 1993), and chromatid
separation does not initiate poleward movement of
chromatids (anaphase B) (Zhang & Nicklas 1996).
Also, sister chromatid separation does not directly de-
pend on spindle formation because chromatids can
separate in the absence of spindle attachment
(Nasmyth et al. 2000, Rieder & Palazzo 1992) and
even when MPF activity is elevated (Sluder & Rieder
1993).

Mishaps can occur during the MAT. If sister
chromatids separate too early, they may both segregate
to the same pole resulting in aneuploidy. Conversely,
if sister chromatids fail to segregate, the outcome can
range from aneuploidy to diploid gametes. In order to
reduce the occurrence of such cytogenetic abnormali-
ties, the MAT is not left to chance alone; it normally
depends on satisfaction of the SAC and APC activa-
tion.
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Premature Centromere Separation (PCS)

PCS and nondisjunction represent the major cytoge-
netic errors that lead to aneuploidy (Angell 1994,
Dailey et al. 1996, Fragouli et al. 2006, Lim et al.
1995, Pellestor et al. 2005, Plachot 2003, Vialard et al.
2006, Wolstenholme & Angell 2000). PCS denotes the
separation of sister chromatids or homologues prior to
anaphase; whereas, nondisjunction results from the
failure of chromatids or homologues to properly sepa-
rate during anaphase. The link between PCS and ane-
uploidy during meiosis is that if homologues or sister
chromatids separate prior to anaphase I, each of the
homologues or sister chromatids may undergo random
segregation (Figure 3). Also, PCS of sister chromatids
prior to anaphase Il onset can result in random segre-
gation instead of amphitelic segregation. Experimental
data have demonstrated a positive correlation between
time postovulation and elevated frequencies of PCS in
MII oocytes and aneuploidy in one-cell mouse zygotes
(Mailhes et al. 1998).

The degree of PCS should be noted when con-
sidering the possible chromosome segregation patterns
of a primary oocyte with PCS and the probability of
aneuploidy. This can range from only the sister chro-
matids of one dyad to complete separation of all chro-
matids (Mailhes et al. 2003a). Considering the most
elementary situation whereby the sister chromatids of
one homologous chromosome separate prematurely
and the other homologues segregate normally, three
potential events may occur during anaphase I: (1) both
of the disjoined sisters may segregate to the secondary
oocyte, while the homologue segregates to the first
polar body or vice versa; (2) both sisters may segre-
gate along with its homologue to the secondary oocyte;
and (3) both sisters may segregate to the first polar
body along with its homologue. Thus, following ana-
phase I, the latter two outcomes would result in ane-
uploid secondary oocytes. Now, considering the case
of a MII oocyte with two single chromatids (PCS of
one dyad), three possible outcomes may occur during
anaphase II: (1) one sister may segregate to the oocyte
pronucleus, while the other goes to the second polar
body; (2) both sisters may segregate to the oocyte pro-
nucleus; or (3) both sisters may segregate to the second
polar body. Again, the latter two segregation possibili-
ties would result in aneuploidy. A noteworthy finding
is that a bipolar spindle is not required for PCS be-
cause both chromatid arm and centromere separation
can occur in the absence of a spindle (Rieder & Pa-
lazzo 1992, Sluder 1979).

The occurrence of PCS is not new. Rodman
(1971) noted that postovulatory-aged mouse oocytes
had higher frequencies of PCS than freshly ovulated
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Figure 3. Possible segregation patterns during meiosis I and II when one homologue undergoes PCS prior to anaphase I.
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oocytes. Subsequently, several groups found a positive
correlation between postovulatory and in vitro oocyte
aging with elevated levels of PCS in human (Angell
1991, 1994, Cupisti et al. 2003, Dailey et al. 1996,
Pellestor et al., 2002, 2003, Rosenbusch 2004), rodent
(Mailhes et al. 1997b, 1998, Yin et al. 1998), and Dro-
sophila oocytes (Jeffreys et al. 2003). Also, experi-
mental data have supported a correlation between
chemically-induced PCS in MII oocytes and ane-
uploidy in one-cell mouse zygotes (Mailhes et al.
1997b).

The molecular events underlying PCS are re-
ceiving considerable attention. The precocious loss of
cohesin proteins from sister chromatids and homo-
logues during mitosis and meiosis has been shown to
result in PCS (Hoque & Ishikawa 2002, Sonada et al.
2001, Uhlmann 2003a). Mutants of the ord and Mei-
$322 Drosophila proteins, which help hold sister chro-
matids together prior to anaphase, exhibited higher
frequencies of PCS and aneuploidy (Kerrebrock et al.
1992, Miyazaki & Orr-Weaver 1992). Also, abnor-
malities in other proteins involved with chromosome
cohesion, such as SMC1 beta in mice (Hodges et al.
2005) and the yeast Pds5 protein (Hartman et al. 2000,
Panizza et al. 2000) can alter normal segregation pat-
terns. Recent results with HeLa cells showed that de-
pletion of the microtubule and kinetochore protein as-
trin resulted in checkpoint arrested cells with PCS

@
<«—— Anaphase | ———>

© ® O &

boo bdo b

-OR - —OR-

@ © ® @

—OR -

W ©

® ©

(Thein et al. 2007). Although specific proteins have
central roles in sister chromatid and homologue cohe-
sion, other compounds also appear to be involved.
Both culture media and the follicular fluid-meiosis-
activating sterol were reported to affect the incidence
of PCS in mouse oocytes in vitro (Cukurcam et al.
2003).

In addition to defects in cohesion proteins,
PCS and aneuploidy can also result from abnormal
SAC protein activity. Deficient Mad2 activity resulted
in MPF degradation, APC activation, loss of sister
chromatid cohesion, and PCS in both Xenopus oocytes
(Peter et al. 2001) and aged mammalian oocytes
(O’Neill & Kaufman 1988). Other data indicated that
as time postovulation increased in mouse oocytes, the
frequencies of PCS and premature anaphase (PA) in-
creased, while the intraoocyte titer of MAD2 tran-
scripts decreased (Steuerwald et al. 2005). Elevated
PCS levels was also reported following the exposure
of mouse oocytes to propylene glycol (Mailhes et al.
1997b) and tamoxifen (London & Mailhes 2001). Fur-
thermore, when mouse oocytes were exposed to the
phosphatase 1 and 2A inhibitor OA prior to metaphase
I, complete separation of homologues into 80 chromat-
ids and elevated levels of aneuploidy in MII oocytes
were found (Mailhes ef al. 2003a). A possible explana-
tion for the elevated levels of PCS found in OA-
exposed oocytes may involve protein hyperphosphory-



lation, as noted in hepatocytes (Cohen et al. 1990) and
rat oocytes (Zernicka-Goetz & Maro 1993) following
OA treatment. During mitosis and meiosis, phosphory-
lation of cohesins facilitates their removal prior to ana-
phase onset (Alexandru et al. 2001, Hoque & Ishikawa
2001, Lee & Amon 2003, Losada et al. 2000, To-
monaga et al. 2000, Yu & Koshland 2005). Finally,
PP2A is found at yeast centromeres during mitosis and
meiosis, and decreased PP2A activity led to loss of
centromeric cohesion at anaphase I and random segre-
gation of chromatids during anaphase II (Kitajima et
al. 2006, Riedel et al. 2006, Tang et al. 2006).

Postovulatory and In Vitro Oocyte Aging

The broad focus of this review is that postovulatory or
in vitro oocyte aging leads to a progressive and func-
tional deterioration of the biochemical and cellular or-
ganelles required for accurate chromosome segrega-
tion, normal fertilization, and embryonic development
(Austin 1967, 1970, Wilcox et al. 1998). Some of
these age-related changes may serve as models for
studying the numerous potential mechanisms of ane-
uploidy.

Mature mammalian oocytes remain capable of
fertilization for a longer period of time than their time
for expressing optimal gamete physiology. The fertiliz-
able lifespan of mammalian oocytes ranges from 12 to
24 h (Hafez 1993). Although the fertilizable average
lifespan for both induced-and naturally-ovulated
mouse oocytes is approximately 15 h postovulation,
their optimal time for fertilization lies between 4 to 6 h
postovulation (Edwards & Gates 1959, Lewis &
Wright 1935, Marston & Chang 1964). After ovula-
tion, time-dependent intraoocyte changes occur that
can lead to apoptosis (Exley et al. 1999, Gordo et al.
2002, Morita & Tilly 1999, Perez et al. 1999) and nu-
clear fragmentation (Gordo et al. 2002). Also, the time
from insemination to fertilization, the rate of pronu-
clear formation, and the first cleavage division were
shorter in postovulatory aged mouse oocytes than in
freshly ovulated oocytes (Fraser 1979, Boerjan & de
Boer 1990).

Most mammals, excluding humans and in-
duced-ovulators, ovulate during or shortly after the
estrus period of their estrous cycle; this facilitates fer-
tilization of freshly ovulated oocytes (Hafez 1993).
Since this situation does not occur in humans, a prob-
ability exists that postovulatory aged oocytes will be
fertilized. Indeed, several groups have proposed that
fertilization of postovulatory aged oocytes (delayed
fertilization) represents a predisposition to aneuploidy
(Blazak 1987, Hecht & Hecht 1987, Juberg 1983,
Mailhes 1987, Pellestor 1991, Zenzes & Casper 1992).
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Two human epidemiologic studies offered support for
an association between delayed fertilization and early
embryonic failure (Wilcox ef al. 1998) and trisomic
offspring (Juberg 1983).

Chemical Alterations in Aged Oocytes

Although freshly-ovulated and postovulatory aged oo-
cytes appear morphologically similar, differences exist
among certain cellular organelles and biochemical ac-
tivities. Some of these dissimilarities resemble those
found following fertilization or partheneogenic activa-
tion (Tarin et al. 1996, Xu et al. 1997), while others
involve alterations to cellular organelles and biochemi-
cal events that can affect chromosome segregation.

Mammalian oocytes possess a time- and spe-
cies-dependent predisposition to spontaneous activa-
tion if fertilization does not occur within a limited time
following ovulation or in vitro culture. Numerous stud-
ies have shown that the incidence of spontaneous oo-
cyte activation in mice begins to increase four hours
postovulation (Homa et al. 1993, Kaufman 1983,
Kubiak 1989, Moses & Masui 1994, Nagai 1987,
Whittingham & Siracusa 1978, Winston et al. 1991,
Yanagimachi & Chang 1961). Aged oocytes also had
lower ATP levels at fertilization (Igrashi et al. 2005),
higher sensitivities to: oxidative stress (Boerjan & de-
Boer 1990, Takahashi et al. 2003, Tarin et al. 1996),
calcium ionophores (Fulton & Whittingham 1978,
McConnell et al 1995, Vincent et al 1992),
partheneogenetic activation following chemical or me-
chanical stimuli (Cutherbertson & Cubbold 1985,
Kaufman 1983, Kline & Kline 1992, Kubiak 1989,
Nagai 1987), and spontaneous calcium release
(Beatrice et al. 1984, Orrenius et al. 1992, Tombes et
al. 1992). The higher titers of calcium found in aged
oocytes were proposed to inhibit both tubulin polym-
erization and the depolymerization of existing micro-
tubules (Kosower & Kosower 1978).

Relative to fresh oocytes, aged oocytes dis-
played higher calmodulin-dependent protein kinase II
activities, but lower activities of MPF and MAPKs
(Lorca et al. 1993, Moos et al. 1995, Verlhac et al.
1994). The diminished MPF activity (resulting from
phosphorylation and conversion to pre-MPF) in aged
porcine (Kikuchi et al. 1995, 2000) and bovine oocytes
(Liu et al. 1998) and of MAPKs in both aged mouse
(Xu et al. 1997) and porcine oocytes in vitro (Ma et al.
2005) were proposed to lead to spontaneous activation,
abnormal chromosome segregation, and apoptosis.
Furthermore, it was shown that the levels of active and
inactive MPF could be regulated by exposing porcine
oocytes to certain phosphatase and kinase inhibitors
(Kikuchi et al. 2000). Such exogenous manipulation of
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phosphorylation-dephosphorylation events appear to
offer another venue for investigating the events associ-
ated with oocyte aging and chromosome segregation.
Additionally, both MPF and MAPK titers were re-
ported to decrease more rapidly in oocytes cultured
from biologically aged mice than those from young
mice (Tatone et al. 2006).

Differences in kinase and phosphatase activi-
ties, protein synthesis, and maternal mRNA recruit-
ment were also noted between fresh and aged bovine
oocytes (Liu et al. 1998). Mos kinase (the product of
the c-mos protooncogene) is needed for stabilizing
MPF during the MII arrest of mouse oocytes (Gabrielli
et al. 1993, Sagata 1996, 1997) and for microtubule
spindle assembly (Sagata 1996, Wang et al. 1994,
Zhao et al. 1991), and in vitro aging of bovine oocytes
was shown to reduce the activity of Mos kinase (Wu et
al. 1997).

When immature porcine oocytes were cultured
for 40 to 72h in vitro, the levels of tubulin and the cen-
tromere protein B (CENP-B) remain unchanged as oo-
cytes aged; whereas, the expressions of the Mad?2 spin-
dle checkpoint protein, the BCL2 antiapoptotic pro-
tein, and the mitogen-activated protein kinase (MAPK)
decreased as culture time increased. Also, the propor-
tions of oocytes with abnormal spindles and chromo-
somes increased with oocyte aging (Ma et al. 2005).
Other data have shown that postovulatory aging of
mouse oocytes resulted in a time-dependent reduction
in the number of Mad2 transcripts and a concomitant
elevation in the frequencies of PCS and PA
(Steuerwald et al. 2005). A recent report utilized bisul-
fite sequencing and COBRA methods to evaluate the
DNA methylation status of differentially methylated
regions (DMRs) of two maternally imprinted genes —
Snrpn and Pegl/Mest. Mouse oocytes aged in vivo for
29 h post-hCG exhibited demethylation of Swnrpn
DMRs. However, no change in the methylation status
of Pegl/Mest was found at 29 h (Liang ef al. 2008).

Histone deacetylase inhibitors are powerful
anti-proliferative compounds undergoing clinical stud-
ies as antitumor drugs. Enhanced acetylation of lysines
on histone H3 and H4 occurs during postovulatory oo-
cyte aging, and the histone deacetylase inhibitor
trichostatin A (TSA) can accelerate the rate of in vivo
aging in mouse oocytes (Huang er al. 2007). Also,
mouse oocytes cultured in the presence of TSA exhib-
ited elevated levels of aneuploidy and early embryonic
death (Akiyama et al. 2006). Another study found that
exposure of HeLa cells to TSA led to loss of the Mad?2
SAC protein from kinetochores and elevated levels of
PCS (Magnaghi-Jaulin et al. 2007).

Cytologic and Cytogenetic Alterations in Aged
Oocytes

Numerous cytologic and cytogenetic altera-
tions have been described in aged mammalian oocytes.
Relative to freshly ovulated oocytes, aged oocytes dis-
played alterations in cortical granule exocytosis and
the zona pellucida (Cascio & Wassarman 1982, Diaz
& Esponda 2004, Gianfortoni & Gulyas 1985, Howlett
1986, Longo 1981, Szollosi 1975, Xu ef al. 1997, Ya-
nagimachi & Chang 1961) and elevated levels of cyto-
plasmic asters and spindle anomalies (Eichenlaub-
Ritter et al. 1986, 1988, George et al. 1996, Kim et al.
1996, Pickering et al. 1988, Segers et al. 2008). Fur-
thermore, aged oocytes displayed higher frequencies of
premature extrusion of the second polar body and
apoptosis (Fissore et al. 2002, Gordo et al. 2000).

When exogenous calcium was added to
Xenopus egg extracts, elevated frequencies of PCS and
PA were detected (Shamu & Murray 1992). Others
proposed that an excess of intracellular calcium, as
found in aged oocytes, triggers a cascade of events
resulting in PCS, PA, and chromosome missegregation
(Fissore et al. 2002, Gordo et al. 2000, Tarin et al.
1996). Both PCS and PA have been proposed to repre-
sent cytogenetic manifestations of spontaneous activa-
tion in aged oocytes (Mailhes et al. 1997a, 1998).
Aged oocytes displayed higher frequencies of chromo-
some displacement from the metaphase plate (Saito et
al. 1993, Webb et al. 1986), and the levels of PCS and
PA were higher in postovulatory and in vitro aged
mammalian oocytes (Angell 1991, Cupisti et al. 2003,
Dailey et al. 1996, Mailhes et al. 1997b, 1998, Pell-
estor et al. 2002, 2003, Rosenbusch 2004, Yin et al.
1998). Fertilization of aged oocytes was correlated
with higher frequencies of fragmented female pronu-
clei (Fissore et al. 2002, Kikuchi et al. 2000, Szollosi
1971), decreased fertilization rates (Smith & Lodge
1987, Wolf et al. 1996), and embryonic viability
(Ekins & Shaver 1975, Sakai & Endo 1988, Wilcox et
al. 1998). Also, the frequencies of polyploidy (Austin
1967, Ishikawa & Endo 1995, Juetten & Bavister
1983, Shaver & Carr 1967, Vickers 1969) and ane-
uploidy (Mailhes et al. 1998, Plachot et al. 1988, Rod-
man 1971, Sakurada et al. 1996, Yamamoto & Ingalls
1972) were higher following delayed fertilization of
mammalian oocytes.

Although most studies found a positive corre-
lation between postovulatory aged oocytes and cyto-
logical and cytogenetic abnormalities, two studies re-
ported that aneuploidy was not clevated in aged oo-
cytes. Although an increase in aneuploidy was not de-
tected when mouse oocytes were aged in vivo for 0 -14
hrs prior to in vitro fertilization, only 1 and 2 zygotes



were analyzed from the 14 and 10 hr aged groups, re-
spectively (Zackowski & Martin-Deleon 1988). An-
other study involving in vivo aging of mouse oocytes
and cytogenetic analysis of single pronuclear haploid
partheneogenones reported no association between
oocyte ageing and aneuploidy (O’Neill & Kaufman
1988). However, these findings may be compromised
by the difficulty of distinguishing between MII oocyte
chromosomes and partheneogenome chromosomes as
well as that between a first and a second polar body. It
is noted that analysis of MII chromosomes cannot de-
tect aneuploidy in postovulatory aged oocytes because
an intervening cell division is needed between the in-
duction and expression of aneuploidy.

When the developmental potential of a limited
number of aged, failed-to-fertilize human oocytes were
compared with fresh, ovulation-induced oocytes,
higher levels of aneuploidy, aberrant spindles, and
cleavage failure were noted in the aged oocytes (Hall
et al. 2007). Also, human embryos resulting from in
vitro maturation and delayed intracytoplasmic sperm
injection exhibited higher levels of aneuploidy when
compared with control embryos (Emery et al. 2005).

Conclusion

At each stage of mitosis and meiosis, the correct order
and temporal interaction among various chemical reac-
tions and cellular organelles are needed to preserve
genomic integrity. Considerable experimental data and
human epidemiological studies have shown that the
probability of successful chromosome segregation and
zygotic development are compromised when oocytes
undergo in vivo or in vitro aging prior to fertilization.
These biochemical and cytological changes reported in
aged oocytes offer unique models for studying some of
the numerous molecular aspects of aneuploidy.

Several innovative technologies have been
used to study the molecular aspects of mitosis and
meiosis. High-density oligonucleotide microarrays and
PCR microarrays (Schlecht & Primig 2003) can be
used to identified loci that regulate the cell cycle in
eukaryotes, including mice and humans. Also, double-
strand RNA-mediated post-transcriptional gene silenc-
ing (RNA interference) offers promise for investigat-
ing the pathways controlling cell cycle progression and
chromosome segregation (Bettencourt-Dias et al.
2004, Prawitt et al. 2004). RNA silencing/knockdown
has been used to alter the expression of Mos mRNA
(Stein et al. 2003) and Mad2 (Homer et al. 2005a) in
order to study the role of genes involved with oocyte
maturation and chromosome segregation in mouse 00-
cytes. When employing RNA interference technolo-
gies, the possibility of off-target effects and the effi-
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ciency of gene silencing should be considered. Gene
knockout strategies for genes upregulated during yeast
meiosis showed that deletion of specific genes required
for maintaining centromeric cohesion during anaphase
I resulted in chromosome missegregation (Gregan et
al. 2005, Marston et al. 2004). Furthermore, genomic
and proteomic analyses have the ability to expand our
knowledge about gene expression. Analyses of cancer
cells showed that a subset of genes are universally acti-
vated in most cancers (Rhodes et al. 2004), and that
overexpression of cell division regulatory genes were
linked with chromosome aberrations and neoplastic
progression (Rajagopalan & Lengauer 2004). Finally,
the use of unique chemical inhibitors that block a spe-
cific pathway during chromosome segregation are
helping to advance our knowledge about aneuploidy
(Dorer et al. 2005, Mailhes et al. 2003a, 2004).

The present and future challenge will be to
understand the complex molecular mechanisms of ane-
uploidy and genomic instability and to apply such
knowledge to reducing the incidence of human genetic
disease and cancer.
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