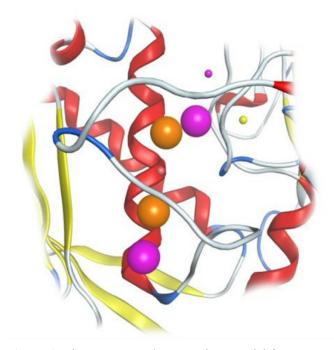
Letter to the Editor

An integrated pipeline for the pest management of Bactrocera oleae


Dimitris Konstantopoulos and Nikos Cosmidis

Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Athens, Greece Received on January 28, 2019; Accepted on May 3, 2019; Published on July 28, 2019 Correspondence should be addressed to Nikos Cosmidis; Tel:+30 210 5294323, Email: ncosmidis@aua.gr

Bactocera oleae (Diptera: Tephritidae) is the most destructive pest of olive orchards worldwide. It is growing its larvae in the mesocarp of olive fruits, thus causing extensive crop damage and significant reduction of olive oil production (Tzanakakis 2003). Bactocera oleae is responsible for the destruction of 5% of the total olive oil production (30% in the Mediterranean countries), with direct impact on a financial level that exceeds 800 million dollars per year. During the last 5 years, 95 % of the world olive oil has been produced in Spain, Italy and Greece, where Bactocera oleae is endemic (Kounatidis et al. 2009). Controlling its population is a priority for producers. Until recently, the main measures against olive flies is to lure them using pheromone traps. However, the excessive use of insectides renders the flies resistant to them. In this direction biological control came up with the use of parasitoids and shortly after the sterile insect technique was introduced. As effective as they are, those techniques are hazardous to both wildlife and the environment.

Olive fly has been reportedly associated with many different bacterial species and one of the most important is Erwinia dacicola. While most fruit flies' larvae can't develop on unripe fruit, olive fly larvae can metabolize very efficiently nutrients from green olives. The main inhibitory substance of unripe olives is oleuropein – a phenolic glycoside whose levels are very high in the unripe olive fruit (Savio et al. 2011). It has been examined that asymbiotic larvae can't develop on unripe olives, while wild type larvae can normally develop. Erwinia dacicola is a co-evolved symbiont to the olive fly that renders it a noncultivable bacterium. Erwinia dacicola can be found intracellularly in the larval midgut caeca cells while in the adult fly, it resides extracellularly in foregut cells (Estes et al. 2012). This transition, common in many insect symbionts, is essential for their survival during the extracellular insect metamorphosis. The localization in the adult fly is also important for the transmission of Erwinia dacicola vertically to the next generation by staining the eggs as they pass through the ovipositor. Bactrocera oleae larvae depends on the biochemical machinery of the candida endosymbiotic Erwinia dacicola to process and metabolize nutrients from unripe olives (Pavlidi et al. 2017). This could lead to a massive decrease on olive fly's population during the first two or three generations of the year, until olive fruit is fully developed, and eventually the full annual population.

Therefore, there is great need to lower the concentration of *Erwinia dacicola* on adult flies. In this direction a three-dimensional homology-based model was designed according to Vlachakis *et al.* (2014). The model was stereochemically and energetically evaluated and was superposed to its template. It was confirmed that the model retained the fold of its template, but more importantly, it shared similar physicochemical and kinetic profile with the X-ray structure it derived from. The main hinderance in *in silico* drug design and high throughput virtual screening is the toxicity and non-specific binding of potential inhibitors. This issue in the real world

Figure 1. The consensus pharmacophore model for *Erwinia dacicola*. The pharmacophore spheres represent and characterize molecules on schematic 3D level by identifying the essential properties of molecular recognition for a low molecular weight inhibitor compound to optimally interact with the fly's endosymbiotic bacterium.

Journal of Molecular Biochemistry (2019) 8, 13-14

© The Author(s) 2019. Published by Lorem Ipsum Press.

References

COOH groups.

Estes A, Hearn D, Burrack H, Rempoulakis P & Pierson E 2012 Prevalence of Candidatus Erwinia dacicola in Wild and Laboratory Olive Fruit Fly Populations and Across Developmental Stages. *Env Entomol* **41** 265-274

Kounatidis I, Crotti E, Sapountzis P, Sacchi L, Rizzi A, Chouaia B, Bandi C, Alma A, Daffonchio D, Mavragani-Tsipidou P & Bourtzis K 2009 Acetobacter tropicalis Is a Major Symbiont of the Olive Fruit Fly (Bactrocera oleae). *Appl Env Microbiol* **75** 3281-3288

Pavlidi N, Gioti A, Wybouw N, Dermauw W, Ben-Yosef M, Yuval B, Jurkevich E, Kampouraki A, Van Leeuwen T & Vontas J 2017 Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding. *Sci Rep* 7 42633

Savio C, Mazzon L, Martinez-Sanudo I, Simonato M, Squartini A & Girolami V 2011 Evidence of two lineages of the symbiont 'Candidatus Erwinia dacicola' in Italian populations of Bactrocera oleae (Rossi) based on 16S rRNA gene sequences. *Int J Syst Evol Microbiol* **62** 179-187

Tzanakakis ME 2003 Seasonal development and dormacy of insects and mites feeding on olive: a review. *Netherlands J Zool* **52** 87-224

Vlachakis D, Champeris Tsaniras S, Ioannidou K, Papageorgiou L, Baumann M & Kossida S 2014 A series of Notch3 mutations in CADASIL; insights from 3D molecular modelling and evolutionary analyses. *J Mol Biochem* **3** 97-105