
Scavenger receptor class B member 2 (SCARB2) (also 

called LIMP-2, CD36L2 or LGP85) is a major ly-

sosomal membrane glycoprotein involved in en-

dosomal and lysosomal biogenesis and maintenance. 

SCARB2 acts as a receptor for the lysosomal mannose

-6-phosphate independent targeting of β-glucuronidase 

and enterovirus 71 and influences Parkinson’s disease 

and epilepsy. Genetic deficiency of this protein causes 

deafness and peripheral neuropathy in mice as well as 

myoclonic epilepsy and nephrotic syndrome in hu-

mans. Comparative SCARB2 amino acid sequences 

and structures and SCARB2 gene locations were exam-

ined using data from several vertebrate genome pro-

jects. Vertebrate SCARB2 sequences shared 43-100% 

identity as compared with 30-36% sequence identities 

with other CD36-like superfamily members, SCARB1 

and CD36. At least 10 N-glycosylation sites were con-

served among most vertebrate SCARB2 proteins ex-

amined. Sequence alignments, key amino acid residues 

and conserved predicted secondary structures were 

examined, including cytoplasmic, transmembrane and 

external lysosomal membrane sequences: cysteine di-

sulfide residues, thrombospondin (THP1) binding sites 

and 16 proline and 20 glycine conserved residues, 

which may contribute to short loop formation within 

the exomembrane SCARB2 sequences. Vertebrate 

SCARB2 genes contained 12 coding exons. The human 

SCARB2 gene contained a CpG island (CpG100), ten 

microRNA-binding sites and several transcription fac-

tor binding sites (including PPARA) which may con-

tribute to a higher level (2.4 times average) of gene 

expression. Phylogenetic analyses examined the rela-

tionships and potential evolutionary origins of the ver-

tebrate SCARB2 gene with vertebrate SCARB1 and 

CD36 genes. These suggested that SCARB2 originated 

from duplications of the CD36 gene in an ancestral 

genome forming three vertebrate CD36 gene family 

members: SCARB1, SCARB2 and CD36.  
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Introduction 
 

Scavenger receptor class B member 2 (SCARB2) [also 

called SRB2, lysosomal membrane glycoprotein 2 

(LIMP-2), cluster of differentiation 36 like-2  

(CD36L2) or lysosomal glycoprotein 85 (LGP85)] is 

one of at least three members of the collagen type 1 

receptor (thrombospondin) CD36-like family that is an 

integrated lysosomal and endosomal membrane protein 

of many tissues and cells of the body (Calvo et al. 

1995, Fujita et al. 1992, Ogata et al. 1994, Tabuchi et 

al. 1997). SCARB2 plays a major role in lysosomal 

and endosomal membrane organization (Gamp et al. 

2003, Kuronita et al. 2002), cytosolic protein turnover 

(Roszek & Gniot-Szulzycka 2005), phagosomal traf-

ficking and macrophage activation (Carrasco-Marin et 

al. 2011). SCARB2 also serves as a lysosomal mem-

brane surface receptor of thrombospondins and other 

lipids (Tserentsoodol et al. 2006), mannose-6-

phosphate independent targeting of β-glucuronidase 

(Blanz et al. 2010, Reczek et al. 2007, Sleat et al. 

2006, Velayti et al. 2011) and enterovirus 71 (involved 

in the pathogenesis of hand, foot and mouth disease) 

(HFMD) (Lin et al. 2012, Yamayoshi et al. 2009, Ya-

mayoshi & Koike 2011). In addition to HFMD, 

SCARB2 has been implicated in diseases such as car-

diac myocyte hypertrophy (Schroen et al. 2007) and 

progressive myoclonus epilepsy and renal failure syn-

drome (Berkovic et al. 2008, Chaves et al. 2011, 

Hopfner et al. 2011, Rubboli et al. 2011) and has been 
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recognized as a candidate gene for autism (Ilu et al. 

2010) and Parkinson’s disease (Do et al. 2011, Miche-

lakakis et al. 2012). 

SCARB1 (also called CLA1, SRB1 and 

CD36L1) is a second member of the CD36 family that 

serves as a homo-oligomeric plasma membrane cell 

surface glycoprotein receptor for high density lipopro-

tein cholesterol (HDL), other phospholipid ligands and 

chylomicron remnants (Acton et al. 1996, Bultel-

Brienne et al. 2002, Connelly et al. 2004, Holmes and 

Cox 2012, Kent & Stylianou 2011, Marsche et al. 

2003). A third member of the CD36 family, CD36 

(also called SCARB3, fatty acyltranslocase [FAT] and 

glycoprotein 88 [GP88]) is an integral membrane pro-

tein of many tissues of the body which plays a role in 

fatty acyl translocation and as a multiple ligand cell 

surface receptor of oxidized low density lipoprotein 

cholesterol (LDL) (Martin et al. 2007, Tandon et al. 

1989), and has been implicated in several diseases in-

cluding insulin resistance, diabetes, atherosclerosis and 

malaria (Adachi & Tsujimoto 2006, Collot-Teixeira et 

al. 2007, Gautum & Banerjee 2011, Martin et al. 2007, 

Ren 2012, Simantov & Silverstein 2003). 

 The gene encoding human SCARB2 

(SCARB2) is on chromosome 4, encoded by 12 coding 

exons (Calvo et al. 1995) and localized between the 

genes encoding nucleoporin (NUP54) and protein fam-

ily 47 (FAM47E) (Kent et al. 2003). In addition, 

SCARB2 has been assigned to chromosome 8 in pigs 

(Kim et al. 2006) and to chromosome 5 in mice, but 

designated as Scarb2 in the latter genome (Tabuchi et 

al. 1997). SCARB2 is ubiquitously expressed in vari-

ous cells and tissues of the body, including kidney 

glomerular tubules (Berkovic et al. 2008, Desmond et 

al. 2011), liver (Tabuchi et al. 1997, Zhang et al. 

2007), retinal ganglia and photoreceptor outer seg-

ments (Tserentsoodol et al. 2006), ureter epithelial 

cells (Gamp et al. 2003), metastatic pancreas islet cells 

(Fujita et al. 1992), the cardiac intercalated disc 

(Schroen et al. 2007) and phagocytes (Carrasco-Marin 

et al. 2011). Studies of Scarb2¯/Scarb2¯ knock out 

mice have shown that SCARB2-deficiency causes 

ureteric pelvic junction obstruction, deafness and pe-

ripheral neuropathy (Gamp et al. 2003), renal tubular 

proteinuria (Desmond et al. 2011), an inability to 

mount a hypertrophic response to increased blood 

pressure, due to the absence of SCARB2 in the cardiac 

intercalated disc (Schroen et al. 2007) and macrophage

-related defects in immunity to infection (Carrasco-

Marin et al. 2011). Human clinical studies have also 

examined SCARB2 polymorphisms associated with 

diseases causing mutations of β-glucocerebrosidase 

binding, which is defective in Gaucher disease (Blanz 

et al. 2010, Velayati et al. 2011); and collapsing focal 

and segmental glomerular sclerosis (FSGS) and myo-

clonic epilepsy (Balreira et al. 2008, Berkovic et al. 

2008, Chaves et al. 2011, Desmond et al. 2011, Dib-

bens et al. 2011, Hopfner et al. 2011, Rubboli et al. 

2011). 

 This paper reports the predicted gene struc-

tures and amino acid sequences for several vertebrate 

SCARB2 genes and proteins, the secondary structures 

for vertebrate SCARB2 proteins, several potential sites 

for regulating human SCARB2 gene expression and the 

structural, phylogenetic and evolutionary relationships 

for these genes and enzymes with those for vertebrate 

SCARB2, SCARB1 and CD36 gene families. 

 

Materials and Methods 
 

Vertebrate SCARB2 gene and protein identification 
BLAST (Basic Local Alignment Search Tool) studies 

were undertaken using web tools from the National 

Center for Biotechnology Information (NCBI) (http://

blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul et al. 1997).  

Protein BLAST analyses used human and mouse 

SCARB2 amino acid sequences previously described 

(Fujita et al. 1992, Ogata et al. 1994, Calvo et al. 

1995, Tabuchi et al. 1997) (Table 1). Non-redundant 

protein sequence databases for several vertebrate ge-

nomes were examined using the blastp algorithm from 

sources previously described (Holmes 2012). This pro-

cedure produced multiple BLAST ‘hits’ for each of the 

protein databases which were individually examined 

and retained in FASTA format, and a record kept of 

the sequences for predicted mRNAs and encoded 

SCARB2-like proteins. Predicted SCARB2-like pro-

tein sequences were obtained in each case and sub-

jected to analyses of predicted protein and gene struc-

tures. 

BLAT (Blast-like Alignment Tool) analyses 

were subsequently undertaken for each of the predicted 

SCARB2 amino acid sequences using the UC Santa 

Cruz Genome Browser (Kent et al. 2003) with the de-

fault settings to obtain the predicted locations for each 

of the vertebrate SCARB2 genes, including predicted 

exon boundary locations and gene sizes. BLAT analy-

ses were similarly undertaken for vertebrate SCARB1 

and CD36 genes using previously reported sequences 

in each case (see Table 1; Holmes & Cox 2012).  

Structures for human SCARB2, mouse Scarb2 and rat 

Scarb2 transcripts were obtained using the AceView 

website to examine predicted gene and protein struc-

tures (Thierry-Mieg & Thierry-Mieg 2006). Predic-

tions for human, mouse and rat SCARB2 CpG islands, 

miRNA binding sites and transcription factor binding 

sites were obtained using the UC Santa Cruz Genome 

Browser (Kent et al. 2003). 
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Predicted Structures and Properties of Vertebrate 

SCARB2 and other CD36-like Proteins  

Predicted secondary structures for vertebrate SCARB2 

proteins, human SCARB1 and CD36, lancelet 

(Branchiostoma floridae) CD36, sea squirt (Ciona in-

testinalis) CD36 and a fruit fly (Drosophila 

melanogaster) epithelial membrane protein 

(FBpp0072309) were obtained using the PSIPRED 

v2.5 web site tools provided by Brunel University 

(McGuffin et al. 2000). Molecular weights, N-

glycosylation sites (Gupta & Brunak 2002) and pre-

dicted transmembrane, cytosolic and exocellular se-

quences for vertebrate SCARB2 proteins were ob-

tained using Expasy web tools (http://au.expasy.org/

tools/pi_tool.html). 

 

Comparative Human SCARB2 and Mouse Scarb2 

Gene Expression 

The genome browser (http://genome.ucsc.edu) (Kent et 

al. 2003) was used to examine GNF Expression Atlas 

2 data using various expression chips for human 

SCARB2 and mouse Scarb2 genes, respectively (Su et 

al. 2004) (http://biogps.gnf.org). Gene array expression 

‘heat maps’ were examined for comparative gene ex-

pression levels among human and mouse tissues show-

ing high (red), intermediate (black), and low (green) 

expression levels. 

 

Phylogeny Studies and Sequence Divergence 

Alignments of vertebrate SCARB2, SCARB1 and 

CD36 sequences were assembled using BioEdit v.5.0.1 

using the default settings (Hall 1999). Alignment of 

ambiguous regions, including the amino and carboxyl 

termini, were excluded prior to phylogenetic analysis, 

yielding alignments of 431 residues for comparisons of 

vertebrate SCARB2 sequences with human, mouse, 

chicken and zebra-fish SCARB1 and CD36 sequences 

with the lancelet (Branchiostoma floridae) CD36 se-

quence (Table 1). Evolutionary distances and phyloge-

netic trees were calculated as previously described 

(Holmes 2012). Tree topology was reexamined by the 

boot-strap method (100 bootstraps were applied) of 

resampling and only values that were highly signifi-

cant (≥95) are shown (Felsenstein 1985).   

 

Results and Discussion 
 

Alignments of Vertebrate SCARB2 Amino Acid 

Sequences 

The deduced amino acid sequences for cow (Co) (Bos 

taurus), chicken (Ch) (Gallus gallus), lizard (Li) 

(Anolis carolensis), frog (Fr) (Xenopus tropicalis) and 

Journal of Molecular Biochemistry, 2012   103 

Figure 1. Amino Acid Sequence Alignments for Vertebrate SCARB2 Sequences. See Table 1 for sources of SCARB2 se-

quences; * shows identical residues for SCARB2 subunits; : similar alternate residues; . dissimilar alternate residues; predicted 

cytoplasmic residues are shown in red; predicted transmembrane residues are shown in blue; N-glycosylated and potential N-

glycosylated Asn sites are highlighted in green; predicted disulfide bond Cys residues are highlighted in cyan blue; predicted α-

helices for vertebrate SCARB2 are highlighted in yellow and numbered in sequence from the start of the predicted exoplasmic 

domain; predicted β-sheets are highlighted in grey and also numbered in sequence; bold underlined font shows residues corre-

sponding to known or predicted exon start sites; exon numbers refer to human SCARB2 gene exons; exolysosomic refers to the 

predicted SCARB2 sequence external to the lysosomal membrane. 



zebrafish (Zf) (Danio rerio) SCARB2 are shown in 

Figure 1 together with the previously reported se-

quences for human (Hu) and mouse (Mo) SCARB2 

(Table 1) (Fujita et al. 1992, Tabuchi et al. 1997).   

Alignments of human with other vertebrate SCARB2 

sequences examined were between 43-100% identical, 

suggesting that these are products of the same family 

of genes, whereas comparisons of sequence identities 

of vertebrate SCARB2 proteins with human SCARB1 

and CD36 proteins exhibited lower levels of sequence 

identities (30-36%), indicating that these are members 

of distinct CD36-like gene families (Table 1). The 

amino acid sequences for mammalian SCARB2 con-

tained 478 residues while chicken (Gallus gallus), liz-

ard (Anolis carolensis), frog (Xenopus tropicalis) and 

zebrafish (Danio rerio) SCARB2 contained 481, 482, 

483 and 474 amino acids, respectively (Table 1; Figure 

1). 

Previous studies have reported several key 

regions and residues for human and mouse SCARB2 

proteins (human SCARB2 amino acid residues were 

identified in each case). These included cytoplasmic N

-terminal and C-terminal residues, residues 2-6 and 

457-478, and N-terminal and C-terminal transmem-

brane helical regions: residues 7-30 and 432-456 

(Fujita et al. 1992, Tabuchi et al. 1997). These motifs 

underwent significant changes in amino acid sequence 

but retained the predicted cytoplasmic and transmem-

brane properties in each case (Figure 1). These 

changes are in contrast to the N-terminal transmem-

brane sequences for vertebrate SCARB1 and CD36 

sequences, for which several glycine residues were 

predominantly conserved, especially for CD36 Gly12, 

Gly16 and Gly24/Gly25 residues and for SCARB1 key 

N-terminal glycine residues (Gly15/Gly18/Gly25) 

(Holmes & Cox 2012), which form a dimerization mo-

tif in the N-terminal transmembrane domain and par-

ticipate in forming SCARB1 oligomers (Gaidukov et 

al. 2011). There were no SCARB2 N-terminal trans-

membrane glycine residues conserved for the verte-

brate sequences examined, although Gly10 was pre-

dominantly conserved with a Gly/Ala substitution ob-

served for the frog SCARB2 sequence (Figure 1). A 

conserved glycine residue was observed for the verte-

brate C-terminal transmembrane sequences (human 

SCARB2 Gly449) (Figure 1); however the role of this 

residue has not been investigated. 

 

Comparative Sequences for Vertebrate SCARB2 N-

Glycosylation Sites 

Ten N-glycosylation sites for human SCARB2 have 

been previously identified for this protein (Figure 1; 

Table 2) (Lewandrowski et al. 2005), whereas eleven 

such sites have been reported for mouse SCARB2 

(Tabuchi et al. 1997). All of these sites were predomi-

nantly retained among the 16 vertebrate SCARB2 se-

quences examined. Given the sequence conservation 

observed for these residues among the vertebrate 

SCARB2 sequences examined, it is apparent that they 

are essential for the function of vertebrate SCARB2 as 

a glycoprotein. The multiple N-glycosylation sites ob-

served for vertebrate SCARB2 sequences were consis-

tent with a major role for N-proteoglycan residues ex-

posed on the external membrane surface of lysosomes 

in the performance of SCARB2 functions in binding 

various lipid molecules, and in their reported functions 

in maintaining the organization of lysosomal and en-

dosomal membranes (Gamp et al. 2003; Kuronita et al. 

2002). This is also supported by recent animal model 

studies, which demonstrated a key role for N-

glycosylation in the recruitment of a related integrated 

membrane CD36-like family member (CD36) into car-

diac membranes (Lauzier et al. 2011).  

 

Vertebrate SCARB2 Cysteine Residues  

Four conserved external lysosomal membrane verte-

brate SCARB2 cysteine residues were observed: 

Cys274, Cys312, Cys318 and Cys329, which corre-

sponded to four of six previously identified disulfide 

forming cysteine residues for bovine CD36  

(Rasmussen et al. 1998). In contrast, ten cysteine resi-

dues of the vertebrate CD36 sequences were con-

served, including two within each of the N- (Cys3 and 

Cys7) and C-terminal (Cys464 and Cys466) cytoplas-

mic sequences, and six within the vertebrate exoplas-

mic sequences (Cys243; Cys272; Cys311; Cys313; 

Cys322; and Cys333) (Holmes & Cox 2012). The 

CD36 N- and C-terminal conserved cytoplasmic cys-

teine residues have been shown to be palmitoylated 

(Tao et al. 1996), which may contribute to protein-

protein interactions, protein trafficking and membrane 

localization (Salaun et al. 2010). These conserved cys-

teines are lacking in the vertebrate SCARB2 sequences 

(Figure 1), which suggests that S-palmitoyl cysteine 

residues do not play a role for this lysosomal mem-

brane protein. Vertebrate SCARB1 exoplasmic se-

quences also contained only four conserved cysteine 

residues forming disulfide bridges (Cys281; Cys321; 

Cys323; and Cys334) (Holmes & Cox 2012) although 

another conserved SCARB1 cysteine (not observed in 

the CD36 and SCARB2 sequences) (human SCARB1 

Cys384) serves a major role in lipid transfer activity 

(Papale et al. 2011, Yua et al. 2011) (Figure 2). 

 

SCARB2 C-terminal Lysosomal Targeting Se-

quences 

The targeting of SCARB2 to lysosomes has been pre-

viously shown to result from a Leu-Ile dipeptide motif 

104   Journal of Molecular Biochemistry, 2012 



 

Journal of Molecular Biochemistry, 2012   105 

V
e
rt

e
b

r
a
te

 

S
C

A
R

B
2
 

S
p

ec
ie

s 
 

S
it

e 
1

  
S

it
e 

2
 

S
it

e 
3
 

S
it

e 
4
 

S
it

e 
5
 

S
it

e 
6
 

S
it

e 
7
 

S
it

e 
8
 

S
it

e 
9
 

S
it

e 
1

0
 

S
it

e 
1

1
 

S
it

e 
1

2
 

S
it

e 
1

3
 

S
it

e 
1

4
 

N
o
 o

f 

S
it

es
 

H
u

m
a

n
 

H
o

m
o

 

sa
p

ie
n

s 
 

4
5
 

N
G

T
E

 

6
8
 

N
V

T
N

 
 

1
0
5

 

N
G

T
T

 
 

 
2

0
6

 

N
G

T
N

 

2
2
4

 

N
F

T
K

 

2
4
9

 

N
G

T
K

 

3
0
4

 

N
T

S
D

 

3
2
5

 

N
V

S
I 

4
1
2

 

N
E

S
V

 

4
3
0

 

N
T

T
L

 
1

0
 

C
h

im
p

 
P

a
n

 

tr
o

g
lo

d
yt

es
 

 
4

5
 

N
G

T
E

 

6
8
 

N
V

T
N

 
 

1
0
5

 

N
G

T
T

 
 

 
2

0
6

 

N
G

T
N

 

2
2
4

 

N
F

T
K

 

2
4
9

 

N
G

T
K

 

3
0
4

 

N
T

S
D

 

3
2
5

 

N
V

S
I 

4
1
2

 

N
E

S
V

 

4
3
0

 

N
T

T
L

 
1

0
 

O
ra

n
g

u
ta

n
 

P
o

n
g

o
 

a
b

el
ii

 
 

4
5
 

N
G

T
E

 

6
8
 

N
V

T
N

 
 

1
0
5

 

N
G

T
T

 
 

 
2

0
6

 

N
G

T
N

 

2
2
4

 

N
F

T
K

 

2
4
9

 

N
G

T
D

 

3
0
4

 

N
T

S
D

 

3
2
5

 

N
V

S
I 

4
1
2

 

N
E

S
V

 

4
3
0

 

N
T

T
L

 
1

0
 

R
h

es
u

s 
M

a
ca

ca
 

m
u

la
tt

a
 

 
4

5
 

N
G

T
E

 

6
8
 

N
V

T
N

 
 

1
0
5

 

N
G

T
T

 
 

 
2

0
6

 

N
G

T
N

 

2
2
4

 

N
F

T
K

 

2
4
9

 

N
G

T
D

 

3
0
4

 

N
T

S
D

 

3
2
5

 

N
V

S
I 

4
1
2

 

N
E

S
V

 

4
3
0

 

N
T

T
L

 
1

0
 

M
a
r
m

o
se

t 
C

a
ll

it
h

ri
x 

ja
cc

h
u

s 
 

4
5
 

N
G

T
E

 

6
8
 

N
V

T
N

 
 

1
0
5

 

N
G

T
T

 
 

 
2

0
6

 

N
G

T
N

 

2
2
4

 

N
F

T
K

 

2
4
9

 

N
G

T
D

 

3
0
4

 

N
T

S
D

 

3
2
5

 

N
V

S
I 

4
1
2

 

N
E

S
V

 

4
3
0

 

N
T

T
L

 
1

0
 

M
o
u

se
 

M
u

s 

m
u

sc
u

lu
s 

 
4

5
 

N
G

T
K

 

6
8
 

N
V

T
N

 
 

1
0
5

 

N
G

T
T

 

1
2
2

 

N
Q

S
V

 
 

2
0
6

 

N
G

T
N

 

2
2
4

 

N
F

S
K

 

2
4
9

 

N
G

T
D

 

3
0
4

 

N
T

S
E

 

3
2
5

 

N
IS

I 

4
1
2

 

N
E

S
V

 

4
3
0

 

N
T

T
L

 
1

1
 

R
a
t 

R
a

tt
u

s 

n
o

rv
eg

ic
u

s 
 

4
5
 

N
G

T
K

 

6
8
 

N
V

T
N

 
 

1
0
5

 

N
G

T
T

 

1
2
2

 

N
Q

S
V

 
 

2
0
6

 

N
G

T
N

 

2
2
4

 

N
F

S
K

 

2
4
9

 

N
G

T
D

 

3
0
4

 

N
T

S
E

 

3
2
5

 

N
IS

I 

4
1
2

 

N
E

S
V

 

4
3
0

 

N
T

T
L

 
1

1
 

C
o
w

 
B

o
s 

ta
u

ru
s 

 
4

5
 

N
G

S
E

 

6
8
 

N
V

T
N

 
 

1
0
5

 

N
G

T
T

 
 

 
2

0
6

 

N
G

T
N

 

2
2
4

 

N
F

S
K

 

2
4
9

 

N
G

T
D

 

3
0
4

 

N
T

S
D

 

3
2
5

 

N
V

S
V

 

4
1
2

 

N
E

S
V

 

4
3
0

 

N
T

T
L

 
1

0
 

D
o
g

 
C

a
n

is
 

fa
m

il
a

ri
s 

 
4

5
 

N
G

S
E

 

6
8
 

N
V

T
N

 
 

1
0
5

 

N
G

T
T

 

1
2
2

 

N
Q

S
V

 
 

2
0
6

 

N
G

T
N

 

2
2
4

 

N
F

S
K

 

2
4
9

 

N
G

T
D

 

3
0
4

 

N
T

S
D

 

3
2
5

 

N
IS

I 

4
1
2

 

N
E

S
V

 

4
3
0

 

N
T

T
L

 
1

1
 

P
ig

 
S

u
s 

sc
ro

fa
 

 
4

5
 

N
G

S
E

 

6
8
 

N
V

T
N

 
 

1
0
5

 

N
G

T
T

 
 

 
2

0
6

 

N
G

T
N

 

2
2
4

 

N
F

S
K

 

2
4
9

 

N
G

T
D

 

3
0
4

 

N
T

S
D

 

3
2
5

 

N
V

S
V

 

4
1
2

 

N
E

S
V

 

4
3
0

 

N
T

T
M

 
1

0
 

R
a
b

b
it

 
O

ry
ct

o
la

g
u

s 

cu
n

ic
u

lu
s 

 
4

5
 

N
G

T
E

 

6
8
 

N
V

T
N

 
 

1
0
5

 

N
G

T
T

 

1
2
2

 

N
Q

S
V

 
 

2
0
6

 

N
G

T
N

 

2
2
4

 

N
F

T
K

 

2
4
9

 

N
G

T
D

 

3
0
4

 

N
T

S
E

 

3
2
5

 

N
A

S
I 

4
1
2

 

N
E

S
V

 

4
3
0

 

N
T

T
M

 
1

1
 

E
le

p
h

a
n

t 
L

o
xo

d
o

n
ta

 

a
fr

ic
a

n
a
 

 
4

5
 

N
G

T
E

 

6
8
 

N
V

T
N

 
 

1
0
5

 

N
G

T
T

 

1
2
2

 

N
L

S
I 

 
2

0
6

 

N
G

T
N

 

2
2
4

 

N
F

T
K

 

2
4
9

 

N
G

T
D

 

3
0
4

 

N
T

S
E

 

3
2
5

 

N
V

S
I 

4
1
2

 

N
E

S
V

 

4
3
0

 

N
T

T
L

 
1

1
 

C
h

ic
k

e
n

 
G

a
ll

u
s 

g
a

ll
u

s 
 

4
5
 

N
G

T
E

 

6
8
 

N
V

T
N

 
 

1
0
5

 

N
G

T
K

 
 

 
2

0
6

 

N
G

T
D

 

2
2
4

 

N
F

S
R

 

2
4
9

 

N
G

T
D

 

3
0
4

 

N
T

T
V

 

3
2
8

 

N
V

S
I 

4
1
5

 

N
E

S
V

 
 

9
 

L
iz

a
r
d

 
A

n
o

li
s 

ca
ro

le
n

si
s 

 
4

5
 

N
G

T
E

 

6
8
 

N
L

T
N

 
 

1
0
5

 

N
D

T
E

 
 

 
2

0
6

 

N
G

S
D

 
 

2
4
9

 

N
G

T
D

 

3
0
4

 

N
V

S
T

 

3
2
8

 

N
V

T
A

 

4
1
5

 

N
E

S
V

 
 

8
 

F
ro

g
 

X
en

o
p
u

s 

tr
o

p
ic

a
li

s 
 

4
5
 

N
E

S
E

 

6
8
 

N
V

T
N

 
9

9
N

IT
F

 
1

0
5

 

N
G

T
E

 
 

1
9
5

 

N
IS

D
 

2
0
7

 

N
T

T
D

 
 

2
5
0

 

N
G

T
D

 

3
0
5

 

N
V

S
V

 

3
2
9

 

N
V

S
I 

4
1
6

 

N
E

S
V

 
 

1
0
 

Z
e
b

r
a
fi

sh
 

D
a

n
io

 r
er

io
 

3
5
 

N
N

T
V

 

4
6
 

N
G

T
E

 

6
9
 

N
L

T
N

 
 

1
0
6

 

N
G

T
R

 

1
2
3

 

N
M

S
R

 
 

2
0
4

 

N
G

T
E

 
 

2
4
7

 

N
G

T
D

 
 

3
2
6

 

N
A

S
V

 
 

 
8

 

T
a

b
le

 2
. 

P
re

d
ic

te
d

 N
-g

ly
co

sy
la

ti
o

n
 S

it
es

 f
o

r 
V

er
te

b
ra

te
 S

C
A

R
B

2
 S

eq
u
e
n
ce

s.
 N

u
m

b
er

s 
re

fe
r 

to
 a

m
in

o
 a

ci
d

s 
in

 t
h
e 

ac
id

 s
eq

u
en

ce
s,

 i
n
c
lu

d
in

g
 N

-a
sp

ar
ag

in
e;

 K
-l

y
si

n
e;

 I
-

is
o

le
u
ci

n
e;

 H
-h

is
ti

d
in

e;
 S

-s
er

in
e;

 T
-t

h
re

o
n
in

e;
 Q

-g
lu

ta
m

in
e;

 D
-a

sp
ar

ta
te

; 
Y

-t
y
ro

si
n
e;

 a
n
d

 V
-v

al
in

e.
 N

o
te

 t
h
at

 t
h
er

e 
ar

e 
1

2
 p

o
te

n
ti

al
 s

it
es

 i
d

en
ti

fi
ed

, 
in

cl
u
d

in
g
 1

0
 s

it
es

 f
o

r 

h
u

m
a
n
 S

C
A

R
B

2
. 

N
-g

ly
co

sy
la

ti
o

n
 s

it
e
s 

w
er

e 
id

en
ti

fi
ed

 u
si

n
g

 t
h
e 

N
et

N
G

ly
c 

1
.0

 w
eb

 s
er

v
er

 (
h
tt

p
:/

/w
w

w
.c

b
s.

d
tu

.d
k
/s

er
v
ic

es
/N

et
N

G
ly

c/
).

 H
ig

h
er

 p
ro

b
ab

il
it

y
 N

-g
ly

co
sy

la
ti

o
n
 

si
te

s 
ar

e 
b

o
ld

. 



in the Leu475-Ile476-Arg477-Thr478 C-terminal cyto-

plasmic sequence (Ogata & Fukuda 1994, Tabuchi et 

al. 1997). The deletion of the nine amino acids closer 

to the SCARB2 C-terminal transmembrane domain 

also abolished this lysosomal location suggesting that 

an extended cytoplasmic tail for this protein is required 

for this function. Figure 1 shows a comparison of ver-

tebrate SCARB2 C-terminal sequences, with the 7 se-

quences examined showing a Leu-Ile or a Leu-Leu 

(zebrafish SCARB2) C-terminal sequence in each 

case, which is consistent with a proposal for a dileu-

cine (or leucine-isoleucine) lysosomal sorting motifs 

reported for the COOH tails of SCARB2 (Sandoval et 

al. 2000) and GLUT4 (insulin-regulatable glucose 

transporter) (James et al. 1989). Tabuchi and cowork-

ers (2000; 2002) have also reported that two acidic 

amino acids (Asp470-Glu471) in the COOH-terminal 

SCARB2 sequence play important roles in regulating 

the movement of this protein within the endocytic 

pathway. A comparison of vertebrate SCARB2 C-

terminal sequences supports this hypothesis with 

acidic amino acids being predominantly conserved for 

these positions, with the exception of zebrafish 

SCARB2, which has an apparent human 470Asp

zebrafish 466Ala substitution, but with an additional 

acidic amino acid (469Glu) further down the C-
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TSP1-A TSP1-B

TSP1-B TSP1-C

Figure 2. Amino Acid Sequence Alignments for Rat (Ra) SCARB2 (SCA2), SCARB1 (SCA1) and CD36 Sequences with 

Lancelet (La), Sea Squirt (Ss) and Fruit Fly (DmEMP1) CD-36 Like Sequences. See Table 1 for sources of rat SCARB2, 

SCARB1 and CD36 sequences as well as other CD36-like sequences; * shows identical residues for CD36-like subunits; : 

similar alternate residues; . dissimilar alternate residues; predicted cytoplasmic residues are shown in red; predicted transmem-

brane residues are shown in blue; N-glycosylated and potential N-glycosylated Asn sites are highlighted in green; free-SH Cys 

involved in lipid transfer for rat SCARB1 is highlighted in pink; predicted disulfide bond Cys residues are highlighted in cyan 

blue; predicted α-helices for vertebrate CD36-like sequences are highlighted in yellow and numbered in sequence from the start 

of the predicted exoplasmic domain; predicted β-sheets are highlighted in grey and also numbered in sequence; bold underlined 

font shows residues corresponding to known or predicted exon start sites; exon numbers are shown; AKL refers to final three C

-terminal residues for rat SCARB1 which bind a PDZ domain-containing protein (PDZK1); transmembrane conserved glycines 

are shown as G; TSP1-A, TSP1-B and TSP1-C represent motifs identified by Crombie & Silverstein 1998. 



terminal cytoplasmic tail (Figure 1). The intracellular 

trafficking of lysosomal membrane proteins has been 

extensively investigated in recent years, and these 

studies have shown that sorting from the Golgi or the 

plasma membrane into the endosomes and lysosomes 

represents one pathway which is mediated by short 

COOH-terminal cytoplasmic sequences (Hunziker & 

Geuze 1996). The dileucine cytoplasmic signal is one 

such pathway, however others also serve to target ly-

sosomal proteins, such as cholesterol ester lipase 

(LIPA) which contains a C-terminal Arg-Lys dipeptide 

sequence (Sleat et al. 2006) and the C-terminal tyro-

sine based lysosomal targeting signal reported for ly-

sosome-associated membrane glycoprotein-1 (LAMP-

1) (Akasaki et al. 2010, Höning et al. 1996). 

 

Predicted Secondary Structures for Vertebrate 

SCARB2 
Predicted secondary structures for vertebrate SCARB2 

sequences were examined (Figure 1), particularly for 

the sequences external to the lysosomal membrane 

(residues 28-433 for rat SCARB2) (Figure 2). α-Helix 

and β-sheet structures were similar in each case, with a 

α-helix extending beyond the N-terminal and C-

terminal transmembrane regions in each case: α1 and 

α6. A consistent sequence of predicted secondary 

structure was also observed for each of the vertebrate 

SCARB2 sequences:  N-terminal cytoplasmic se-

quence--N-terminal transmembrane sequence--α1--β1-

-α2--β2--β3--β4--β5--α3--β6--α4--α5--β7--β8--β9--β10

--β11--β12--β13--β14--α6--C-terminal trans-membrane 

sequence--C-terminal cytoplasmic sequence. Further 

description of the secondary and tertiary structures for 

SCARB2 must await the three dimensional structure of 

this protein, particularly for the external lysosomal 

membrane region which directly binds lipids and con-

tributes towards the organization and maintenance of 

the lysosomal membranes (Gamp et al. 2003; Kuronita 
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Figure 3. Gene Structures and Major Transcripts for the Human, Mouse and Rat SCARB2 Genes. Derived from the AceView 

website http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/; 31 mature isoforms are shown with capped 5’- and 3’- ends for 

the predicted mRNA sequences; NM refers to the NCBI reference sequence; exons are in pink; the directions for transcription 

are shown as 5’  3’; black squares show predicted CpG island sites at or near the 5’untranslated regions of the genes; the 

symbol ⌃ shows 10 predicted microRNA binding sites observed at or near the SCARB2 3’untranslated regions; sizes of mRNA 

sequences are shown in kilobases (kb); predicted transcription factor binding sites (TFBS) for human SCARB2 are shown: 

PPARA- peroxisome proliferator-activated receptor-α ; ATF-activation transcription factor; IRF7-interferon regulatory factor; 

HAND1-heart- and neural crest derivatives-expressed protein system; EVI1-ecotropic viral integration site; NKX 2.2-



et al. 2002). 

 

Conserved Proline and Glycine Residues within the 

SCARB2 External Lysosomal Membrane Domain 

Figure 1S (see supplementary data) shows the align-

ment of 7 vertebrate SCARB2 amino acid sequences 

for the external lysosomal membrane domain with col-

ors depicting the properties of individual amino acids 

and conservation observed for some of these protein 

sequences. In addition to the key vertebrate SCARB2 

amino acids detailed previously, others were also con-

served, including 16 proline residues. Prolines play a 

major role in protein folding and protein-protein inter-

actions, involving the cyclic pyrrolidine amino acid 

side chain, which may introduce turns (or kinks) in the 

polypeptide chain as well as having destabilizing ef-

fects on α-helix and β-strand conformations 

(MacArthur & Thornton 1991). In addition, the pres-

ence of sequential prolines within a protein sequence 

may confer further restriction in folding conformation 

and create a distinctive structure, such as that reported 

for the mammalian Na+/H+ exchanger, which plays a 

major role in cation transport (Kreiger et al. 2005). 

Sequential prolines (P1 and P2: Pro57-Pro58) were 

conserved for 6 of 7 vertebrate SCARB2 sequences 

examined, which may confer a distinctive conforma-

tion in this region supporting the lipid receptor func-

tions for this protein. For three of the vertebrate 

SCARB2 sequences examined, four sequential proline 

residues were observed (chicken, frog and zebrafish: 

Pro57-Pro58-Pro59-Pro60) which may contribute fur-

ther to the distinctive folding conformation in this re-

gion. Regions of water exposed proteins with high lev-

els of proline residues are often sites for protein-

protein interactions (Kay et al. 2000) and these resi-

dues may significantly contribute to the binding of lip-

ids by the external lysosomal membrane region of 

SCARB2. Similar results have been recently reported 

for vertebrate SCARB1 and CD36 exoplasmic regions, 

however 30 and 17 conserved proline residues were 

observed, respectively in these proteins (Holmes & 

Cox 2012). 

 Figure 1S (see supplementary data) also shows 

conservation of 20 glycine residues for these vertebrate 

SCARB2 external domains of lysosomal membranes, 

which due to their small size, may be essential for 

static turns, bends or close packing in the domain, or 

required for conformational dynamics during lipid re-

ceptor on-off switching, as in the case of the aspartate 

receptor protein (Coleman et al. 2005). Both proline 

and glycine residues are frequently found in turn and 

loop structures of proteins, and usually influence short 

loop formation within proteins containing between 2 

and 10 amino acids (Kreiger et al. 2005). Evidence for 

these short loop structures within vertebrate SCARB2 

external lysosomal membrane sequences was evident 

from the predicted secondary structures for vertebrate 

SCARB2 (Figure 1), with proline and/or glycine resi-

dues found at the start or end of the following struc-

tures: β1 (Pro57; Pro58; Pro60), α2 (Pro72), β2 (Gly78

-Pro81), β3 (Gly87/Pro88), β4 (Gly106), α3 (Pro139), 

α5 (Gly179), β7 (Gly211; Gly218), β8 (Gly233), β11 

(Gly211) and β12 (Pro371) (Figure 1). 

 

Alignments of Rat SCARB2, SCARB1 and CD36 

with other CD36 Sequences 

  The amino acid sequences for rat SCARB2, 

SCARB1 and CD36 (see Table 1) are aligned in Figure 

2. The sequences were 30-33% identical and showed 

similarities in several key features and residues, in-

cluding cytoplasmic N-terminal and C-terminal resi-

dues; N-terminal and C-terminal trans-membrane heli-

cal regions; disulfide bond forming residues, previ-

ously identified for bovine CD36: Cys243-Cys311, 

Cys272-Cys333 and Cys313-Cys322 (Rasmussen et 

al. 1998); several predicted N-glycosylation sites for 

rat SCARB2 (11 sites) (Table 2), rat SCARB1 (10 

sites) and CD36 (9 sites) (Holmes & Cox 2012), of 

which only one was shared between these sequences 

(N-glycosylation site 10) (Table 2); similar throm-

bospondin-1 binding sites (designated as TSP1-A, 

TSP1-B and TSP1-C) previously reported for 

SCARB2, SCARB2 and CD36 (Crombie & Silverstein 

1998) and similar predicted secondary structures previ-

ously identified for SCARB1 and CD36 (Holmes & 

Cox 2012) (Figure 1). Sequence comparisons for the 

TSP1 binding sites confirmed the presence of a protein 

kinase C consensus phosphorylation site (Crombie & 

Silverstein 1998) within the TSP1-A site (GPYTYR) 

for rat SCARB2, CD36 and SCARB1 (but with a sub-

stitution at one site: GPYVYR). The current studies 

demonstrated other common features of these sites; 

namely the predicted β-sheet secondary structures for 

TSP1-A (β2) and TSP1-B (β3), the absence of pre-

dicted secondary structure for TSP1-C (located be-

tween β5 and β6) and the predicted N-glycosylation 

sites observed for TSP1-B. The Cys384 residue, for 

which the free-SH group plays a major role in 

SCARB1-mediated lipid transport (Yua et al. 2011), 

was unique to SCARB1, being replaced by other resi-

dues for the corresponding SCARB2 and CD36 pro-

teins (Gly379 and Phe383, respectively). N-terminal 

transmembrane glycine residues, which play a role in 

the formation of SCARB1 oligomers (Gaidukov et al. 

2011), were also observed for the rat CD36 sequence, 

although twin-glycines (Gly23-Gly24) were observed 

for the vertebrate CD36 sequences (Holmes & Cox 

2012). In contrast, only one of these glycines (Gly10) 
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was observed for the rat SCARB2 N-terminal trans-

membrane sequence. These results suggest that rat 

SCARB2, SCARB1 and CD36 proteins share several 

important properties, features and conserved residues, 

including being membrane-bound with cytoplasmic 

and transmembrane regions, N-glycosylated at specific 

sites and have similar secondary structures but each is 

sufficiently different to serve distinct functions exter-

nal to the respective membrane surfaces. 

 Alignments were also prepared for the pre-

dicted lancelet (Branchiostoma floridae) and sea squirt 

(Ciona intestinalis) CD36-like sequences (Table 1) 

and a major epithelial membrane protein (EMP) from 

the fruit fly (Drosophila melanogaster ) 

(FBpp0072309) (Nichols & Vogt 2008) with the rat 

SCARB2, SCARB1 and CD36 sequences (Figure 2). 

The lancelet, sea squirt and fruit fly sequences exam-

ined shared many features with the CD36-like rat se-

quences, including the N- and C-terminal cytoplasmic 

and transmembrane sequences, similarities in predicted 

secondary structures, positional identities for five con-

served cysteine residues (indicating conservation of at 

least 2 disulfide bridges for these proteins), predicted 

N-glycosylation sites (including one which is shared 

across all 6 CD-like sequences; site 10 in Table 2) and 

transmembrane glycine residues, which were observed 

in both the N- and C-terminal sequences, although 

with only a single glycine residue for the human 

SCARB2 sequence. 

 

Gene Locations and Exonic Structures for Verte-

brate SCARB2 Genes 
Table 1 summarizes the predicted locations for verte-

brate SCARB2 genes based upon BLAT interrogations 

of several vertebrate genomes using the reported hu-

man and mouse SCARB2 sequences (Fujita et al. 

1992, Tabuchi et al. 1997) and the predicted sequences 

for other vertebrate and fruit fly CD36-like genes de-

rived from the UC Santa Cruz genome browser (Kent 

et al. 2003). The predicted vertebrate SCARB2 genes 

were transcribed on either the positive strand (e.g. 

chimpanzee, rhesus monkey, marmoset, rat, chicken, 

lizard and zebrafish genomes) or the negative strand 

(e.g. human, orangutan, mouse, cow, pig, opossum, 

chicken and frog genomes). Figure 1 summarizes the 

predicted exonic start sites for human, mouse, cow, 

chicken, lizard, frog and zebrafish SCARB2 genes with 

each having 12 coding exons, in identical or similar 

positions to those reported for the human SCARB2 

gene (Kent et al. 2003). 
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Figure 4. Comparative Tissue Expression for Human and Mouse SCARB2 Genes. Expression ‘heat maps’ (GNF Expression 

Atlas 2 data) (http://biogps.gnf.org) (Su et al, 2004) were examined for comparative gene expression levels among human and 

mouse tissues for SCARB2 genes showing high (red); intermediate (black); and low (green) expression levels. Derived from 

human and mouse genome browsers (http://genome.ucsc.edu) (Kent et al. 2003). 



Figure 3 shows the predicted structures for the 

major human, mouse and rat SCARB2/Scarb2 tran-

scripts (Thierry-Mieg & Thierry-Mieg 2006). The tran-

scripts were ~2kbs in length with 12 exons present for 

the mRNA transcripts and in each case, a non-coding 

5’-untranslated sequence and an extended 3’-

untranslated region (UTR) were observed.  The human 

SCARB2 genome sequence contained several predicted 

transcription factor binding sites (TFBS), including 

PPARA (peroxisome proliferator-activated receptor-

α), which plays a major role in kidney proximal tubule 

development and maintenance (Kamijo et al. 2002) 

where SCARB2 is highly expressed (Berkovic et al. 

2008, Desmond et al. 2011); NRSF (neuron-restrictive 

silencing factor), which functions as a neuronal cell 

repressor (Kim et al. 2004); ATF (activating transcrip-

tion factor 1) which mediates heme oxygenase induc-

tion by heme and drives macrophage adaptation to in-

traplaque hemorrhage during atherosclerosis (Boyle et 

al. 2012); IRF7 (interferon regulatory factor-7) which 

is critical for the regulation of inflammatory responses 

in the central nervous system (Salem et al. 2011); 

HAND1 (heart- and neural crest derivatives-expressed 

protein system) which drives ongoing expression of 

cardiac-specific genes (Riley et al. 1998); EVI1 

(ecotropic viral integration site), which is a complex 

transcription factor with multiple functions 

(Buonamici et al. 2003) and NKX22 (homeobox pro-

tein Nkx-2.2) which contributes to the expression of 

genes that play a role in axonal guidance (Holz et al. 

2010). 

 Figure 3 also reports the presence of a CpG is-

land within the promoter region of the human, mouse 

and rat SCARB2 genes (CpG100, CpG69 and CpG60, 

respectively). CpG islands were also observed within 

the promoter regions of other vertebrate SCARB2 

genes, including marmoset (CpG106), pig (CpG71) 

and lizard (CpG420) (data not shown). CpG islands are 

typically found within the gene promoter for house-

keeping genes (Saxanov et al. 2006). Elango & Yi 

(2011) have also proposed that larger CpG islands are 

associated with gene promoters showing a broad range 

of gene expressions and contain more RNA poly-

merase II binding sites than other promoters. Conse-
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Figure 5: Phylogenetic Tree of Vertebrate SCARB2 Amino Acid Sequences with Human, Mouse, Chicken and Zebrafish 

SCARB1 and CD36 Sequences. The tree is labeled with the SCARB-like name and the name of the animal and is ‘rooted’ with 

the lancelet CD36 sequence. Note the 3 major clusters corresponding to the SCARB2, SCARB1 and CD36 gene families. A ge-

netic distance scale is shown. The number of times a clade (sequences common to a node or branch) occurred in the bootstrap 

replicates are shown. Only replicate values of 95 or more, which are highly significant are shown with 100 bootstrap replicates 

performed in each case.  



quently, the presence of CpG100 and the transcription 

factor binding sites observed within the SCARB2 gene 

may contribute significantly to the broad tissue expres-

sion observed for SCARB2 transcripts. The human 

SCARB2 transcript also contained an extended 3’-

noncoding segment with ten predicted miRNA binding 

sites (miR-340, 203, 10, 182, 590, 876, 141, 542, 219 

and 494), which is well in excess of the usual number 

of such sites. miRNAs have been reported to function 

as post-transcriptional regulators that bind to comple-

mentary sequences on target messenger RNA tran-

scripts (mRNAs), which result in translational repres-

sion or target degradation and gene silencing (Bartel 

2009). 

 

Comparative Human and Mouse SCARB2 Tissue 

Expression 

Figure 4 presents ‘heat maps’ showing comparative 

gene expression for various human and mouse tissues 

obtained from GNF Expression Atlas Data using the 

U133A and GNF1H (human) and GNF1M (mouse) 

chips (http://genome.ucsc.edu; http://biogps.gnf.org) 

(Su et al. 2004). These data support a broad and high 

level of tissue expression for human and mouse 

SCARB2, particularly for adipose tissue, cardiac myo-

cytes, skeletal muscle and liver which is consistent 

with previous reports for these genes (Calvo et al. 

1995, Fujita et al. 1992, Ogata et al. 1994, Tabuchi et 

al. 1997). Much lower levels of mouse Scarb2 gene 

expression were observed in oocytes and during early 

embryonic development. Overall, however, human and 

mouse SCARB2 tissue expression levels were 2-4 

times higher than the average level of gene expression, 

which supports the key role played by this protein in 

lysosomal and endosomal membranes of the body. 

 

Phylogeny of vertebrate SCARB2 and related 

CD36-like sequences   

A phylogenetic tree (Figure 5) was calculated by the 

progressive alignment of 17 vertebrate SCARB2 

amino acid sequences with human, mouse, chicken and 

zebrafish SCARB1 and CD36 sequences ‘rooted’ with 

the lancelet (Branchiostoma floridae) CD36 sequence 

(see Table 1). The phylogram showed clustering of the 

SCARB2 sequences into groups which were consistent 

with their evolutionary relatedness as well as groups 

for human, mouse, chicken and zebrafish SCARB1 

and CD36 sequences, which were distinct from the 

lancelet CD36 sequence. These groups were signifi-

cantly different from each other (with bootstrap values 

of ~ 100/100). It is apparent from this study of verte-

brate CD-like genes and proteins that this is an ancient 

protein for which a proposed common ancestor for the 

CD36, SCARB1 and SCARB2 genes may have pre-

dated the appearance of fish  > 500 million years ago 

(Donohue & Benton 2007). In parallel with the evolu-

tion of SCARB2 and other CD36-like proteins 

(SCARB1 and CD36), thrombospondins (TSPs) are 

also undergoing evolutionary changes in their struc-

tures and functions (Bentley & Adams 2010), with 

gene duplication events proposed at the origin of deu-

terostomes. 

 

Conclusions 

 
The results of the present study indicate that vertebrate 

SCARB2 genes and encoded proteins represent a dis-

tinct gene and protein family of CD36-like proteins 

which share key conserved sequences that have been 

reported for other CD36-like proteins (SCARB1 and 

CD36) previously studied (Acton et al. 1996, Bultel-

Brienne et al. 2002, Connelly et al. 2004, Fujita et al. 

1992, Holmes & Cox 2012, Kent et al. 2011, Kuronita 

et al. 2002, Lin et al. 2012, Marsche et al. 2003, Ogata  

& Fukuda 1994, Tabuchi et al. 1997). SCARB2 has a 

unique property among these proteins in serving major 

roles within endosomal and lysosomal membranes of 

various cells and tissues of the body. SCARB2 is en-

coded by a single gene among the vertebrate genomes 

studied and is highly expressed in human and mouse 

tissues, particularly in adipose tissue, cardiac myo-

cytes, skeletal muscle and liver, and usually contained 

12 coding exons. Predicted secondary structures for 

vertebrate CD36 proteins showed strong similarities 

with other CD36-like proteins, SCARB1 and CD36. 

Three major structural domains were apparent for ver-

tebrate SCARB2, including the N-terminal and C-

terminal cytoplasmic domains, the N-terminal and C-

terminal transmembrane domains, the external ly-

sosomal membrane domain, two disulfide bridges and 

several N-glycosylation sites for glycan binding, which 

are apparently essential for membrane recruitment. 

Phylogenetic studies using 17 vertebrate SCARB2 se-

quences with human, mouse, chicken and zebrafish 

SCARB1 and CD36 sequences indicated that the 

CD36 gene has appeared early in evolution, prior to 

the appearance of bony fish more that 500 million 

years ago, and has undergone at least two gene dupli-

cation events. 
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