
The simplicity and potential of minimally invasive 

testing using sera from patients makes auto-antibody 

based biomarkers a very promising tool for use in can-

cer diagnostics. Protein microarrays have been used for 

the identification of such auto-antibody signatures. 

Because high throughput protein expression and purifi-

cation is laborious, synthetic peptides might be a good 

alternative for microarray generation and multiplexed 

analyses.   

 In this study, we designed 1185 antigenic pep-

tides, deduced from proteins expressed by 642 cDNA 

expression clones found to be sero-reactive in both 

breast tumour patients and controls. The sero-reactive 

proteins and the corresponding peptides were used for 

the production of protein and peptide microarrays. Se-

rum samples from females with benign and malignant 

breast tumours and healthy control sera (n=16 per 

group) were then analysed. Correct classification of the 

serum samples on peptide microarrays were 78% for 

discrimination of ‘malignant versus healthy controls’, 

72% for ‘benign versus malignant’ and 94% for 

‘benign versus controls’. On protein arrays, correct 

classification for these contrasts was 69%, 59% and 

59%, respectively. 

 The over-representation analysis of the classi-

fiers derived from class prediction showed enrichment 

of genes associated with ribosomes, spliceosomes, en-

docytosis and the pentose phosphate pathway. Se-

quence analyses of the peptides with the highest sero-

reactivity demonstrated enrichment of the zinc-finger 

domain. Peptides’ sero-reactivities were found nega-

tively correlated with hydrophobicity and positively 

correlated with positive charge, high inter-residue pro-

tein contact energies and a secondary structure propen-

sity bias. This study hints at the possibility of using in 

silico designed antigenic peptide microarrays as an 

alternative to protein microarrays for the improvement 

of tumour auto-antibody based diagnostics. 
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In silico design and performance of peptide microarrays for breast cancer 

tumour auto-antibody testing 

Introduction 
 

Breast cancer is the leading tumour type in women, 

with an estimated 1 million new cases worldwide each 

year (Pisani et al. 2002; Sturgeon et al. 2008). An in-

creased survival rate is highly correlated with an early 

detection of malignancy, making diagnostics a critical 

tool in cancer prevention. Over the past decades sev-

eral diagnostic tools have been developed and used in 

screening programmes, such as mammography, ultra-

sound imaging and magnetic resonance imaging (MRI) 

(Piura & Piura 2011). These are all able to detect prob-

able malignancies; however, definitive answers still 

require biopsy and histopathological examination. 

 Blood-based biomarker discovery is an emerg-

ing field of cancer research which seeks to identify 

specific and sensitive markers, enabling clinicians to 

make decisions with great accuracy and reliability. 
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Detection of tumour-associated auto-antibodies from a 

few drops of blood may provide a possibility to screen 

patients with the suspicion of breast cancer or even 

before, through periodical examination. Tumour-

associated antibodies can be identified through selec-

tive binding to special antigens, called ‘tumour-

associated antigens’ (TAAs). TAAs derived from aber-

rantly expressed proteins during the onset and progres-

sion of cancer development, display ‘non-self’ epi-

topes which trigger the immune system to remove 

them. The observed antigenicity has been attributed to 

multiple features of cancer growth, including accumu-

lated mutations in cancer cells (e.g. point mutations, 

translocations), overexpression and translation of 

‘differentiation genes’ or improper post-translational 

modification (Backes et al. 2011). These molecules 

usually possess important functions in tumourigenesis, 

such as regulation of the cell cycle, cell proliferation 

and apoptosis (Ullah & Aatif 2009). Previous studies 

have already elucidated several TAAs from the sera of 

breast cancer patients, such as MUC1, HSP90, HER2/

neu, c-myc, NY-ESO1/LAGE1 and Lipophilin B 

(Carter et al. 2003, Chapman et al. 2007, Conroy et al. 

1995, Disis et al. 1994). Auto-antibodies against p53 

tumour suppressor proteins were also detected in the 

sera of 9-26% of women with breast cancer 

(Montenarh 2000). However, it has been shown that 

through assaying of sera, reactivity for a single TAA is 

neither sensitive nor specific enough to discriminate 

between healthy individuals and cancer patients. Thus 

a combination of multiple TAAs would be preferred to 

generate a diagnostic classification tool. 

 Several methods have been developed to iden-

tify, screen and validate discriminative TAAs. SEREX 

(Serological Analysis of Recombinant Expressed 

cDNAs) and SERPA (Serological Proteomics Analy-

sis) are such methods, employed to identify de novo 

TAAs directly from tumour cells (Lu et al. 2008). Al-

though these methods have been used successfully to 

uncover new antigens (Hamrita et al. 2008, Qian et al. 

2005, Stempfer et al. 2010), the drawback of these 

technologies is that they are labour intensive and only 

applicable on a small scale. Higher throughput meth-

ods such as protein macro- and microarrays allow for 

simultaneous quantification of serum reactivity of 

thousands of proteins. One of the major challenges of 

these applications is the requirement of a huge number 

of in-frame cDNA clones and the subsequent expres-

sion and purification of the cognate proteins from 

them. The physicochemical properties (e.g. length vs. 

hydrophobic domains) of expressed proteins are usu-

ally highly variable and displaying the associated reac-

tive epitopes upon immobilisation can be hardly con-

trolled. 

 Peptide microarrays represent another alterna-

tive solution as shorter peptide sequences may reca-

pitulate the biological function (i.e. the antigenic epi-

tope) of the corresponding protein (Cretich et al. 2006; 

Uttamchandani & Yao 2008). Production of synthetic 

peptides is a well established technique and using pep-

tide arrays as a potential alternative to protein arrays 

would have several advantages. The concept of the 

peptide array was first proposed by Southern in 1988 

(Southern 1988). Techniques like photolithographic 

peptide synthesis on a glass surface (Fodor et al. 1991) 

and the SPOT-synthesis technology (Frank 2002) have 

accelerated the applications of synthetic peptides in 

microarray experiments (Shin et al. 2005). 

 In this report we evaluate the performance of a 

SPOT-synthesized peptide microarray. This technol-

ogy utilizes the traditional fmoc chemistry to synthe-

size peptides in single droplets immobilized on the 

surface of slides.  Based on a semi-empirical method 

developed by Kolaskar and Tongaonkar (Kolaskar & 

Tongaonkar 1990), we deduced antigenic peptides 

from a set of previously identified, protein microarray-

derived, antigenic proteins. We probed these peptides 

with sera from breast cancer patients and individuals 

with benign breast nodules, whilst compared them 

with samples from healthy donors. We further evalu-

ated the identified sero-reactive peptides using bioin-

formatics tools and defined panels of TAAs, which are 

able to discriminate between samples of healthy con-

trol, malignant and benign tumours. 

 

Materials and Methods 
 

Serum Samples 

Serum samples were obtained after the consent of the 

breast cancer patients and healthy female volunteers. 

The samples were then stored at -80°C. The study was 

approved by the Ethics Committee of the Medical Uni-

versity of Vienna, the General Hospital of Vienna 

(study number: 143/2007) and all procedures were car-

ried out in compliance with the Helsinki Declaration. 

For the protein and peptide microarray analysis of 

breast cancer serum biomarkers, 48 serum samples 

(malignant n=16; benign n=16; healthy n=16) were 

used. The clinical and the pathological cohorts of the 

serum samples are described in Table 1. All the 16 ma-

lignant samples were collected from patients diag-

nosed with invasive ductal carcinoma and tested posi-

tive to HER2/neu. Furthermore, the benign samples 

were collected from patients diagnosed with fibroade-

noma. Healthy control serum samples (n=16, mean age 

76.9±7.15), were collected from healthy volunteers 

who presented no personal or familial history of breast 

or ovarian cancer. 
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Protein extraction and purification 

In an earlier study, 642 clones were identified from a 

collection of 38,016 cDNA expression E. coli clones 

(hEx1 library (Bussow et al. 2000)), which reacted 

positively to the sera from the breast cancer patients 

and the healthy control individuals. For the recombi-

nant protein expression in E. coli and protein purifica-

tion, the procedure developed by Stempfer et al. was 

followed (Stempfer et al. 2010). In brief, the cDNA 

expression clones were cultured in 96 deep well plates 

and were induced by an autoinduction strategy for re-

combinant protein production. The expressed His-

tagged proteins were then purified using Ni-NTA aga-

rose and eluted in microarray spotting buffer (50 mM 

KH2PO4 and 50 mM K2HPO4, pH 8.0, 500 mM imida-

zole, 0.01% SDS and 0.01% NaN3). 

 

Design of Antigenic Peptides 
Peptides corresponding to the 642 reactive proteins 

were designed as an alternative to the recombinant pro-

teins found reactive in the initial membrane screening. 

To predict the antigenic peptides, the EMBOSS tool 

“Antigenic” (http://liv.bmc.uu.se/cgi-bin/emboss/

antigenic) was used. The minimum length of the pre-

dicted peptide sequences is 6 amino acids (aa). The 

“Antigenic” tool employs a semi-empirical method 

developed by Kolaskar and Tongaonkar for the selec-

tion of antigenic peptide sequences. This method uses 

the physicochemical properties of amino acid residues 

and their frequencies of occurrence in experimentally 

known segmental epitopes to predict antigenic deter-

minants on proteins (Kolaskar & Tongaonkar 1990). 

 The DNA sequence was available for 596 of 

the 642 clones. Of those, 581 clones were unique and 

used for antigenic peptide prediction. The default set-

tings of the “Antigenic” tool were used, and for each 

unique clone sequence, 2-3 different peptides were 

selected based on antigenicity score and peptide-

length. In trying to achieve uniform synthesis, peptides 

sized 8-10 aa were selected. Based on the maximum 

antigenicity score, antigenic peptides which were 

longer than 10 aa were shortened. For antigenic motifs 

shorter than 8 aa peptides, N terminal aa’s correspond-

ing to the template sequence were added. In addition, 

tetanus specific antigenic peptides were designed for 

the NCBI reference sequence NP_783831; 56 tetanus 

specific peptides were selected from all potential anti-

genic peptides based on their maximum antigenicity 

score. Furthermore, peptides of 10 aa in length were 

selected for synthesis as described above. 

 In order to find over-represented motifs in the 

peptide set, sequences were submitted to MEME motif 

search web-based tool (http://meme.nbcr.net). The mo-

tif was considered as ‘enriched’ if it had at least 5 se-

quences (sites) with an E-value less than 0.001. Motif 

searching was also performed on peptide sequences 

with high sero-reactivity (defined as median log2 in-

tensities >13 of all 48 samples analysed; min.: 6.21; 

max.: 15.84). 
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Benign (n=16) 

Malignant 

(n=16) 

Age (years)a 52.5±4.9 53.75±8 

Gradingb  

G1 - 1 

G2 - 5 

G3 - 10 

Oestrogen receptor 

positive 
- 9 

pT stagec  

pT1; pT1b; pT1c; 

pT1mic; pT2 
- 

3; 3; 7; 

1; 2 

pN staged  

pN0; pN1; pN1a; 

pN2; pN2a; pN3 
- 

7; 1; 1; 

1; 3; 2 

Metastasis stagee: 

M0 
- 6 

Menopause statusf  

Pre-menopause 3 4 

Post-menopause 8 11 
aThe age of the patients is represented as a mean 

(age±standard deviation). 
bG1 (low-grade), G2 (intermediate grade) and G3 (high-

grade). Low-grade tumours are usually slow growing and 

are less likely to spread. High-grade tumours are likely to 

grow more quickly and are more likely to spread. 
cpT1: Tumour 2.0 cm or less in dimension; pT1b: Tumour 

between 0.5 and 1 cm in dimension; pT1c: Tumour be-

tween 1.0 and 2.0 cm in dimension; pT1mic: Microinva-

sion 0.1 cm or less in dimension; pT2: Tumour between 

2.0 and 5.0 cm in dimension. 
dpN stage: information available for 15 patients. pN0: No 

regional lymph node metastasis; pN1: Metastasis to mov-

able ipsilateral axillary lymph node(s); pN1a: Only micro-

metastasis (none larger than 0.2 cm); pN2: Metastasis to 

ipsilateral axillary lymph node(s) fixed to each other or to 

other structures; pN2a. Metastasis in 4-9 axillary lymph 

nodes, including at least one that is larger than 2 mm; pN3: 

Metastasis to ipsilateral internal mammary lymph node(s). 
eMetastasis stage: information from 6 patients. M0: No 

distant metastasis. 
fInformation from 11 benign and 15 malignant samples.  

Table 1. Clinical and pathological data of the patient-study 

cohort. Benign and maligant samples were collected from 

patients with fibroadenomas and invasive ductal carcinoma, 

respectively. 



 

Microarray production 

The procedure for the protein microarray production 

has been described in our previous study (Stempfer et 

al. 2010). In brief, the protein microarrays were gener-

ated using the purified recombinant proteins obtained 

from the cDNA expressing E. coli clones. These puri-

fied proteins were spotted using an Omnigrid arrayer 

(GeneMachines, San Carlos, CA) with SMP 3 pins 

(TeleChem International Inc., Sunnyvale, CA) under 

adjusted air humidity; between 55% and 60%. Spots 

were printed in duplicates on ARChip Epoxy slides 

(Preininger et al. 2004) and each microarray contained 

4 identical subarrays. The crude protein extract of the 

E.coli host was used for positive control spots, and 

plain buffer spots were used as negative controls.  

For the generation of peptide microarrays, 1212 clone-

specific and 56 tetanus specific short peptides were 

synthesized using SPOT synthesis technology (JPT 

Peptide Technologies GmbH, Berlin, Germany). Ami-

nooxy-acetylated peptides were synthesized in parallel 

on cellulose membranes. Once the de-protection of the 

side chain was achieved, the solid phase-bound pep-

tides were transferred to 96 well microtitre filtration 

plates (Millipore, Bedford, USA). These peptides were 

cleaved from the cellulose membranes using 200 ml of 

aqueous triethylamine (0.5% v/v). The triethylamine-

peptide solution was filtered and evaporated under re-

duced pressure to remove the solvent. This was fol-

lowed by re-dissolving the resultant peptide deriva-

tives (50 nmol) in 25 mL of spot buffer (70% DMSO, 

25% 0.2 M sodium acetate pH 4.5, 5% v/v glycerol). 

The re-dissolved peptide solution was then transferred 

into 384 well microtitre plates and used for the genera-

tion of the peptide arrays.  Two droplets of 0.5 nL pep-

tide solution (1 mM) were immobilized in triplicates 

on ARChip Epoxy slides (Preininger et al. 2004), con-

taining 4 identical sub-arrays on each slide. For the 

immobilization of the peptide solution, a non-contact 

printer Nanoplotter (GESIM, Groberkmannsdorf, Ger-

many) fitted with a piezoelectric NanoTip (GESIM) 

was used. Apart from the peptides derived from the 

cDNA clone-proteins, human Immunoglobulins (Igs) 

(IgA, IgE, IgG and IgM) and 56 tetanus toxin (TT) 

specific peptides were also immobilized on the peptide 

microarrays. The human Igs and TT specific peptides 

were used as positive controls, while the empty buffer 

spots were used as negative controls. 

 

Microarray processing 

The microarrays were blocked with DIG easy Hyb 

(Roche Applied Science, Vienna, Austria) for 30 min 

and then washed twice in Phosphate Buffered Saline 

with 0.1% Tween 20 (PBST) for 5 min. Breast cancer 

serum samples (benign; n=16 and malignant; n=16) 

and control sera (n=16) diluted in a 1:10 ratio with 

PBST were applied onto the microarrays and incubated 

for 2 hours. The microarrays were then washed twice 

in PBST for 5 min. This was followed by incubation 

for 30 min with goat anti human IgG detection anti-

body, fluorescently labelled with Alexa647 dye 

(Invitrogen, Vienna, Austria), diluted 1:500 in 

PBST+3% non-fat dry milk powder. Later, the mi-

croarrays were washed twice in PBST for 5 min. The 

array images of the processed slides were then cap-

tured using an Axon Genepix 4000A microarray scan-

ner (Molecular Devices, Union City, CA). 

 

Data analysis 

Fluorescent intensity values (median after subtraction 

of the local background) were calculated from the 

scanned images using the Genepix software 

(Molecular Devices). Statistical analysis of the mi-

croarray experiments was performed using the BRB-

ArrayTools software 3.8.1 [http://linus.nci.nih.gov/

BRB-ArrayTools.html] developed by Dr. R Simon and 

Amy Peng Lam (Simon et al. 2007). The log2-

transformed values of the signal intensities obtained 

from the scanned images of the processed microarrays 

were used for the analysis. The peptide microarray 

data were normalized using the “house-keeping gene” 

normalisation option within BRB-ArrayTools using 

the “Tetanus peptides” and “Igs” spots as normalisa-

tion features. For the data from protein microarrays, a 

global normalization was used to normalize each array 

using the relative median over all the log intensity val-

ues within one experiment. To identify the proteins/

peptides expressed differentially between classes, a 

random-variance t-test was applied to the data sets 

(Wright & Simon 2003). Significance of differentially 

expressed proteins/peptides were then ranked using the 

p-value (0.05 and 0.01 for protein and peptide microar-

ray data, respectively) from the univariate test. Further 

statistical data analysis was performed using R version 

2.6.2 (R Development Core Team 2005). 

 For defining a classifier set of antigenic pro-

teins and peptides, the class prediction tools imple-

mented in BRB-ArrayTools were used and leave-one-

out cross validation (LOOCV) was conducted. Differ-

ent classification algorithms (compound covariate, k 

nearest neighbour (k=1 and k=3), nearest centroid, 

support vector machines, diagonal linear discriminant 

analyses and Bayesian compound covariate prediction) 

were run for model generation. The model incorpo-

rated the features that were differentially expressed 

among all the microarray-features at the 0.01 and 0.05 

significance level as assessed by the random variance t

-test, respectively (Wright & Simon 2003). We esti-

132   Journal of Molecular Biochemistry, 2012 



were used as reference set and a ‘hypergeometric dis-

tribution test’ was performed for computing P-values. 

The significance value of 0.05 (Benjamini and Ho-

chberg adjusted) was chosen.  

 

Results 

 
Antigenic motif search 

Out of 642 clone-proteins, which were used for the 

protein microarray production, sequences of 596 pro-

teins were available. All 3 possible reading frames of 

DNA sequences coding for proteins were collected and 

checked for the longest uninterrupted ORF sequence. 

After eliminating the duplicates, we found 581 unique 

sequences which were used for antigenic motif search. 

Using the “Antigenic” tool we obtained 4492 antigenic 

peptides for these 581 clone-sequences, resembling an 

average of 7.73 peptides per clone. When the length of 

the 4492 antigenic peptides were plotted against fre-

quency of occurrence, a high frequency of occurrence 

was observed with peptides of length ranging from 6 to 

20 amino acids (Figure 1) and also, a uniform distribu-

tion of antigenic motifs were found along the 581 

clone-sequences subjected to peptide design (Figure 

2). 

 Of the 4492 antigenic motifs 2866 were 

unique motifs. From the latter, 2-3 peptides per clone 

mated the prediction error for each model using 

LOOCV, as described by Simon and colleagues 

(Simon et al. 2003). For each LOOCV training set, the 

entire model building process was repeated, including 

the peptide and protein selection process. We also 

evaluated whether the cross-validated error rate esti-

mate for a model was significantly less than one would 

expect from random prediction. The class labels were 

randomly permuted and the entire LOOCV process 

was repeated. The significance level is the proportion 

of the random permutations that gave a cross-validated 

error rate no greater than the cross-validated error rate 

obtained with the real data. Cross-Validation receiver 

operating curve (ROC) analyses from the Bayesian 

Compound Covariate Predictor were conducted and 

the ‘area under the curve’ (AUC) values were calcu-

lated as implemented in ‘BRB-ArrayTools’ class pre-

diction tools. 

 

Over-representation analysis 

An over-representation analysis (ORA) of the classifi-

ers derived from the microarray experiments was per-

formed using the gene set enrichment analysis tool 

“GeneTrail” (Keller et al. 2008). The classifiers from 

the peptide microarray analysis were traced back to the 

proteins they were derived from and the ORA was per-

formed using the corresponding gene Ids. Similarly, 

the classifiers from the protein array analysis were 

used for the ORA. For ORA, a reference set was com-

pared to the test sets (genes corresponding to the clas-

sifiers). All annotated human genes (NCBI GeneIDs) 
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Figure 1. Length distribution of 4492 peptides. The figure 

shows the frequency of occurrence (Y-axis) of the peptides 

with regards to the length of the antigenic motif (X-axis). A 

relatively high frequency of occurrence was observed for 

the short-length peptides. 
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Figure 2. Distribution of 4492 antigenic motifs along the 

581 clone sequences. The x-axis depicts the start amino acid 

position within the targeted clone-sequences; on the y-axis, 

the length of the antigenic-peptides is depicted.  A uniform 

distribution of the antigenic motifs was observed along the 

clone sequences. Density of plotted antigenic motifs is high-

est for short peptides (<20mers; y-axis).  



were selected which had maximum scores (1.3 to 

0.987) and thus identified 1212 peptides. Out of these 

1212 peptides, 53%, 33.7% and 13.2% of the peptides 

were 8-10, 7-14 and more than 14 aa long, respectively 

(Table 2). Peptides with lengths ranging 6 to14 were 

present at highest frequency compared to the longer 

peptides (Figure 3). These 1185 single peptides, in-

cluding the human Igs and the 56 TT specific peptides 

were used for the peptide array production. 

 

Serum reactivity of ‘antigenic’ peptide arrays 

Median intensities of each duplicate peptide spot from 

the 48 microarray analyses were calculated and used to 

evaluate the correlation of serum-reactivity towards the 

‘antigenicity score’ and the influence of aa addition or 

removal from the antigenic motif (peptide lengths were 

adjusted in order to synthesize and spot 8-10 aa pep-

tides; see Methods). We could not find any correlation 

of microarray signal intensities with ‘length adjust-

ment of peptides’ and ‘antigenicity scores’ (Figure 4).  

 Furthermore peptides were converted into nu-

merical representations and subjected to linear correla-

tion analysis with median and maximum intensities. 

Overall 3697 amino acid and sequence parameters 

were used for this alternative representation. Of these, 

the majority was derived from AAINDEX (http://

www.genome.jp/aaindex/), augmented by a few fea-

ture descriptors commonly used in QSAR analysis and 

basic amino acid statistics, including simplified alpha-

bets (Söllner 2006). B-cell antigenicity was estimated 

using a previously presented regression model and se-

quence entropy using a composition biased method 

(Sollner et al. 2008). Susceptibility to proteasomal 

processing was assessed using netChop (Keşmir et al. 

2002). Affinity for 43 MHC alleles was predicted us-

ing netMHC (Lundegaard et al. 2008) and highest af-

finities mapped to respective supertypes. For all single 
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Figure 3. Length distribution of 1185 single peptides. The 

frequency of occurrence (Y-axis) of the peptides with re-

gards to the length of the antigenic motif (X-axis) is shown. 

Figure 4. Antigenic reactivity derived from 48 samples. Median peptide array intensities (log2 transformed) were plotted ver-

sus the ‘antigenicity score’ (A), and the ‘length adjustment’ (denoted “pos”). Positive values correspond to the number of aa 

added, negative values to aa removed from the antigenic motifs for the generation of 8-10aa peptides for array spotting (B). 

  

Length (aa) 
Number of 

peptides 

Number of 

clones 

8-10 643 329 

7-14 409 79 

>14 160 55 

Table 2. Number of peptides with regards to the length of 

the antigenic motifs and the number of the corresponding 

clones. 



ties. A scatter plot of the maximally correlated feature, 

a hydrophobicity scale by Wilce et al. (Wilce et al. 

1995), is shown in Figure 5. The scatter plot clearly 

supports a linear dependency and a selection of other 

substantially correlated peptide properties is listed in 

Table 3. Measured median intensities are particularly 

negatively correlated with hydrophobicity and posi-

tively correlated with both positive charge and high 

inter-residue protein contact energies. The existence of 

a possible secondary structure propensity bias is also 

apparent. 

 

Motif enrichment analysis 

Motif enrichment analysis was performed on our mi-

croarray peptide set (1185 peptides) using the MEME 

motif discovery tool (Bailey & Elkan, 1994; http://

meme.sdsc.edu/meme/). The most significant and 

highly represented motif found was similar to Zn-

finger domains of Zn-H2C2-type (Fig. 6A, see 

pfam13465: zf-H2C2_2). The motif logo consisted of 

26 sequences and the diagram clearly depicts the 

highly weighted two central cysteines, separated by 

two other amino acids. Seemingly the first two amino 

acids (proline and tyrosine) also have a conserved role 

to constitute these domains (Figure 6A). In a second 

screen, only those peptides were considered in the 

analysis that gave high intensity values (median log2 

>13). The analysis of highly reactive peptides eluci-

dated similar results: the only significantly enriched 

motif was again the previously identified Zn-finger 

aa parameters, averages over the entire peptide, N- and 

C-terminal residues were computed. 

 The features with the highest positive or nega-

tive correlation (in the order of -0.5 and +0.45, respec-

tively) all originate among physico-chemical proper-

ties, in particular hydrophobicity, inter-residue contact 

energy, secondary structure and charge related proper-
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Figure 5. Scatter plot of the peptides parameterized using 

the hydrophobicity scale by Wilce et al. (WILM950101 on 

x-axis) versus the median peptide array intensities (log2 

transformed on y-axis). 

Parameter 

Correlation to 

median  

intensity 

Type URL 

WILM950101 -0.53 negative http://www.genome.jp/dbget-bin/www_bget?aaindex:WILM950101 

COWR900101 -0.53 negative http://www.genome.jp/dbget-bin/www_bget?aaindex:COWR900101 

GUOD860101 -0.52 negative http://www.genome.jp/dbget-bin/www_bget?aaindex:GUOD860101 

NAKH920108 -0.52 negative http://www.genome.jp/dbget-bin/www_bget?aaindex:NAKH920108 

JURD980101 -0.51 negative http://www.genome.jp/dbget-bin/www_bget?aaindex:JURD980101 

MONM990101 0.48 positive http://www.genome.jp/dbget-bin/www_bget?aaindex:MONM990101 

FAUJ880111 0.46 positive http://www.genome.jp/dbget-bin/www_bget?aaindex:FAUJ880111 

CHOP780207 0.46 positive http://www.genome.jp/dbget-bin/www_bget?aaindex:CHOP780207 

MIYS990102 0.45 positive http://www.genome.jp/dbget-bin/www_bget?aaindex:MIYS990102 

MIYS990101 0.45 positive http://www.genome.jp/dbget-bin/www_bget?aaindex:MIYS990101 

Table 3. Physico-chemical parameters maximally correlated with the median intensity derived from the peptide arrays proc-

essed with 48 serum samples. Correlation coefficients scale between -1 and 1, indicating negative and positive correlation, re-

spectively. 



(Figure 6B). Since only 385 sequences were used in 

this analysis these motifs were “shorter” (8 amino ac-

ids) and again clearly depicted the Zn-finger domain 

characteristics for the superfamily. The finding that Zn

-finger domains presented in our peptide array analy-

ses as highly sero-reactive, confirms their antigenicity. 

These findings are concordant with previous reports, 

which found several members of Zn-finger proteins as 

tumour-associated antigens (Ludwig et al. 2012). 

 

Microarray analysis 

The data obtained upon processing the protein and the 

peptide microarrays with the breast cancer (n=16), be-

nign fibroadenomas (n=16) and healthy control (n=16) 

sera was subjected to statistical evaluation. The class 

prediction of the samples was performed using BRB-

ArrayTools and the performance of algorithms with 

the highest correct classifications is depicted. 

 We elucidated a marker-set of 54 peptides 

(Table 1S; see supplementary data) which enabled 

78% correct classification  using the “compound co-

variate classifier” of malignant samples and healthy 

controls with 75% sensitivity and 81.2% specificity 

(Table 4). The ROC curve derived from this class pre-

diction (Figure 7A) demonstrated AUC values of 

0.758. For the prediction of the same classes on protein 

array, a marker-set of 57 proteins was deduced (Table 

2S; see supplementary data). These proteins enabled 

the 69% correct classification of the malignant samples 

and healthy controls with 62.5% sensitivity, 75% 

specificity (Table 4) and an AUC value of 0.68 

(support vector machine classifier) (Figure 7B). 

 For class prediction of the benign and malig-

nant samples on peptide arrays, we elucidated 9 pep-

tides (Table 3S; see supplementary data) which en-

abled correct classification of 72% (3-Nearest 

Neighbours classifier) with 62.5% sensitivity and 

81.2% specificity (Table 4) An AUC value of 0.6 was 

observed for this classification (Figure 7D). Similarly 

on the protein array, 17 proteins (Table 4S; see supple-

mentary data) enabled 59% correct classification (1-

Nearest neighbour) of benign and malignant samples 

with 87.5% sensitivity, 31.2% specificity (Table 4) and 

an AUC value of 0.461 (Fig. 7E) (Table 4). 

 The class prediction between the benign and 

the control samples yielded 17 peptides (Table 5S; see 

supplementary data) which gave 93.8% sensitivity and 

specificity with 94% correct classification (1-Nearest 

Neighbour classifier method) (Table 4). The observed 

AUC value of the ROC curve for this class prediction 
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Figure 6. Sequence logos of enriched motifs. (A) Sequence 

logo depicting the most significant motif (E-value: 1.0-

e100, 26 sites). (B) Analysis of peptides with high experi-

mental signal intensity (median log2>13) giving very simi-

lar results (E-value: 9.8e-23, 11 sites). MEME sequence 

logos represent probability matrices that specify the prob-

ability of each letter in all possible positions. 

Classes Microarray 
Classification 

method 

Correctly 

classified 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
PPV NPV AUC 

Malignant 

vs. 

Control 

Peptide 

Compound 

covariate  

predictor 

78 75 81.2 0.8 0.765 0.758 

Protein 
Support vector 

machine 
69 62.5 75 0.714 0.667 0.68 

Benign 

vs.  

Malignant 

Peptide 
3-Nearest 

neighbours 
72 62.5 81.2 0.769 0.684 0.6 

Protein 
1-Nearest 

neighbour 
59 87.5 31.2 0.56 0.714 0.461 

Benign 

vs. 

Control 

Peptide 
1-Nearest 

neighbour 
94 93.8 93.8 0.938 0.938 0.852 

Protein 

Compound 

covariate 

predictor 

59 62.5 56.2 0.588 0.6 0.648 

Table 4. Class predication of benign, malignant and control samples using peptide and protein arrays. 

PPV: positve predictive value. NPV: negative predictive value. PPV and NPV correspond to the proportion of samples with 

positive and negative test results, respectively, which are correctly diagnosed.  



was 0.852 (Figure 7F). From the protein microarray 

data, we elucidated a panel of 35 proteins (Table 6S; 

see supplementary data) which enabled 59% correct 

classification (compound covariate classifier) of be-

nign and control samples; sensitivity was 62.5%, 

specificity was 56.2% (Table 4) and the corresponding 

AUC value was 0.648 (Figure 7G). Upon comparing 

the classifiers derived from all the class predictions 

performed on peptide and protein arrays, we identified 

9 overlapping proteins corresponding to the genes:, 

PCSK1,  DGKK, ZNF598, TBC1D9, TMEM199, 

EPB41L3, SAMD6, PRPF38A and C1orf9.  
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Figure 7. Cross-Validation ROC curves from the Bayesian Compound Covariate Predictor. The figures A, D and F represent 

the ROC curves obtained from the class predictions performed using the data from the peptide arrays. The figures B, E and G 

represent the ROC curves from the class predictions obtained from the protein microarray analysis. The figures C and H repre-

sent the ROC curves from the class predictions obtained from the protein array analyzed using the proteins corresponding to the 

respective peptide array classifiers. The x-axes and y-axes represent the false positive rate (1-specificity) and true positive rate 

(sensitivity), respectively. The ROC curves A, B and C represent the class prediction of malignant and control samples. The 

class predictions of benign and malignant samples are represented by the ROC curves D and E. Similarly, the ROC curves F, G 

and H represent the class prediction of the benign and control samples. 



 Using the clone-proteins (recombinantly ex-

pressed proteins from the cDNA expression clones) 

corresponding to the classifier peptides derived from 

the class prediction of malignant and control samples, 

a set of 4 proteins  (Table 7S; see supplementary data) 

were deduced which enabled a correct classification of 

66% (compound covariate classifier), with 56.2% sen-

sitivity, 75% specificity and an AUC value 0.688 

(Figure 7C). The class prediction of malignant and be-

nign samples was not possible using the clone proteins 

corresponding to the classifier peptides. The clone pro-

teins corresponding to the classifier from the class pre-

diction of benign and the control samples enabled a 

72% correct classification (compound covariate classi-

fier) of the same classes with 2 clone proteins (Table 

8S; see supplementary data). For this class prediction, 

68.8% sensitivity, 75% specificity and an AUC value 

of 0.793 (Figure 7H) were observed. 

 Higher percentages of the correct classification 

were observed on peptide arrays compared to the same 

contrasts on protein microarray data (Table 4). For ex-

ample, when malignant samples were compared to 

healthy controls, peptide arrays gave 9% more correct 

classification compared to protein arrays. Similarly, 

peptide arrays gave a 13% and 35% increasingly cor-

rect classification for the contrasts between ‘benign vs 

malignant’ and ‘benign vs controls’, respectively, 

when compared to the protein microarrays. 

 The signal intensities from all the peptide ar-

ray classifiers were compared with the ones from the 

corresponding proteins on the protein arrays. Simi-

larly, the signal intensities from all the protein array 

classifiers were compared to the ones from the corre-

sponding peptides. These comparisons failed to give 

any correlation between the peptide and protein array 

data (Figures 1S and 2S; see supplemental file). 

Over-representation analysis 

 

Peptide array classifiers 

Over-representation analysis of the genes encoding the 

classifier peptides from all class predictions on peptide 

arrays was performed using the gene set analysis tool 

“GeneTrail” (Keller et al. 2008). Out of 57 genes rep-

resenting the peptide classifiers, 3 genes, namely 

RPL7A, RPL24 and RPL6 were involved in the KEGG 

ribosome pathway. PGLS and ALDOA were found to 

be involved in the pentose phosphate pathway, while 

ISY1 and PRPF38A were involved in the spliceosome 

pathway (Table 5). Out of the 57 genes, 7 genes con-

tain a Zn-finger domain and among these 7 genes, 4 

genes contain Zn-finger domains of the Zn-H2C2-type. 

 

Protein array classifiers 

Similarly, ORA was performed using the genes encod-

ing the classifiers from all the class predictions on the 

protein array. 2 genes (RPS3A and RPS13) out of a 

total of 59 representing the protein classifiers were 

found to be involved in the KEGG ribosome pathway. 

GIT1, CHMP4C, EHD2 and GRK1 were involved in 

the KEGG endocytosis pathway (Table 6). We found 

that 28% and 32% of the genes represented by the clas-

sifier proteins contained sequence motifs such as 

coiled coils and ELR motifs at p-values equal to 

0.0004 and 0.003, respectively. An enrichment of the 

protein family domains such as the UBA/TS-N domain 

(ubiquitin associated domain found on the N terminus 

of EF-TS (elongation factor thermo stable)) and the 

TBC domain was also observed. 

Discussion 
 

Peptide microarrays displaying synthetic peptides can 

be used for the detection of antibodies in serum apart 

from their utility in epitope-mapping, substrate profil-

ing and probing peptide-ligand interactions (Andresen 

et al. 2006; Uttamchandani & Yao 2008). In the con-

text of serodiagnostics, peptide arrays have been used 

for the detection of Hepatitis B and C viruses, human 

immunodeficiency virus (HIV), Epstein-Barr virus and 

syphilis (Duburcq et al. 2004).  Li et al. (Li et al. 
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KEGG 

pathways 

p-

value 

Expected 

number 

of genes 

Observed 

number 

of genes 

Genes 

Pentose 

phosphate 

pathway 

0.003 0.06 2 
PGLS, 

ALDOA 

Ribosome 0.003 0.2 3 

RPL7A, 

RPL24, 

RPL6 

Spliceosome 0.04 0.3 2 
ISY1, 

PRPF38A 

Table 5. Over-represented genes from the peptide array 

classifier and the corresponding KEGG pathways 

KEGG 
pathways 

p-
value 

Expected 
number 
of genes 

Ob-
served 

number 
of genes 

Genes 

Endocyto-
sis 

0.006 0.6 4 

GIT1, 
CHMP4
C, EHD2, 

GRK1 

Ribosome 0.04 0.2 2 
RPS3A, 
RPS13 

Table 6. Over-represented genes from the protein array clas-

sifier and the corresponding KEGG pathways 



2010) used peptide arrays with an extracellular domain 

of epidermal growth factor receptor (EGFR) protein 

and detected auto-antibodies against an EGFR domain 

in the sera of non-small cell lung cancer patients. In 

this study, we designed peptides representing sero-

reactive antigenic proteins using the antigenic motif 

search tool. We then used peptide microarrays to iden-

tify the auto-antibody signatures against these peptides 

in the sera of patients with breast cancer and benign 

fibroadenomas as well as healthy females. 

 The prediction of the antigenic peptides was 

performed based on the occurrence of hydrophobic 

residues (cysteine, leucine and valine) in a given pro-

tein sequence (Kolaskar & Tongaonkar 1990). This 

prediction method predicts the antigenic sites with ap-

proximately 75% accuracy. Using the Antigenic tool 

(Selak et al. 2003) we identified antigenic sites within 

the sequence of the early endosome antigen 1 (EEA1) 

protein with antigenic scores ranging from 1.135 to 

1.09. In our study, we used the predicted antigenic mo-

tifs with the antigenic scores ranging from 1.3 to 

0.987. The short peptides, with lengths ranging from 4 

to 15 aa, are effective enough to identify antibody epi-

topes (Reineke & Sabat 2009). In this study, 86.7% of 

the predicted antigenic peptides had varying lengths 

from 7 to 14 amino acids. These peptide sequences 

were used for deducing the individual peptides and for 

the generation of peptide arrays. Peptides with the 

highest sero-reactivity of all the 48 samples showed 

enrichment of motifs similar to Zn-finger domains, 

which can be explained due to the central cysteine be-

ing highly hydrophobic. Moreover, many Zn-finger 

proteins contain variable numbers of Zn-finger do-

mains (Iuchi 2001). These features allowed the Anti-

genic tool to label many of these peptides as antigenic. 

 We have tested another method introduced by 

Wilce and colleagues (1995) to see the correlation be-

tween experimental signal intensities and physic-

chemical properties. The physicochemical parameters 

maximally correlated with the median intensity de-

rived from the peptide arrays. The peptides’ reactivi-

ties were found particularly negatively correlated with 

hydrophobicity while conversely they were positively 

correlated with positive charge, high inter-residue pro-

tein contact energies and possibly a secondary struc-

ture propensity bias. 

 The peptide microarrays were generated using 

synthetic peptides designed with the Antigenic tool 

using cDNA sequences of seroreactive proteins. At the 

same time, protein microarrays were produced using 

the recombinantly expressed proteins from the human 

cDNAs expressed in E. coli. The peptide and protein 

microarrays were used for the evaluation of the same 

set of serum samples. On peptide arrays, classification 

success for distinguishing the 3 classes of malignant, 

benign and control serum samples outperformed pro-

tein arrays during the class prediction analyses. Apart 

from the better sensitivities and specificities, ROC 

analyses on peptide array data provided higher AUC 

values compared to that of protein microarrays (Table 

4 and Figure 7). 

 The binding ability of an antibody to a protein 

largely depends on the conformation at the region of 

binding. The antibodies specific to the proteins have 

the same specificity as long as the binding site is lo-

cated on the surface of the molecule (Geysen et al. 

1985). Expression of recombinant proteins in E. coli 

often leads to the production of misfolded proteins 

(Baneyx & Mujacic 2004). Furthermore, microarray 

immobilization of proteins will dramatically change 

their conformation and accessibility. These effects 

may, in turn, lead to low reproducibility and controver-

sial findings when array-platforms are changed. In our 

study, the possibility of having misfolded proteins im-

mobilized onto protein microarray may have attributed 

to the identification of classifier proteins which did not 

correlate with the results from the peptide microarrays. 

 As performed here, sero-reactive clones were 

identified by a macro-membrane based screening. On 

those membranes, E. coli clones were grown, protein 

expression was induced and the proteins were immobi-

lized directly on the site of clone growth. For elucida-

tion of the diagnostic value of identified antigenic pro-

teins, microarrays provide today’s best option for con-

firmation and validation of thousands of proteins in 

parallel. Biomarker-validation requires analyses of 

many patient samples that would thus be best per-

formed on microarrays. However, switching from the 

macro-membranes used in biomarker identification to 

microarrays requires the isolation of proteins and sub-

sequent spotting on the microarray surfaces. Although 

array-variability due to clone cultivation, protein ex-

pression and immobilization directly on each mem-

brane is omitted when microarrays are generated from 

purified proteins, conditions are dramatically changed 

when moving from macro- to micro-arrays. This might 

also be the reason why protein microarrays in our 

study have shown up with moderate to low classifica-

tion success of malignant breast cancer, benign breast 

nodules and controls. In addition, it has to be noted 

that when sero-reactive clones are discovered from e.g. 

patients and controls, the different TAA-discovery 

technologies like SEREX, macromembranes or phage 

display are currently performed using pooled samples 

rather than many single samples processed in parallel. 

Consequently, even when “differential” TAA profiles 

for different pools of sample classes are discovered, 

these findings are no warranty for any classification 
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success during analyses of single samples. 

 Since the prediction of the antigenic peptides 

was solely based on the protein sequences and each 

peptide presented a single antigenic site, there may be 

a better chance for auto-antibodies to bind specifically 

to a single feature on the microarray. Single spots of 

purified proteins however, might present with multiple 

antigenic sites and would thus enable binding of multi-

ple antibodies. As already mentioned, this might spe-

cifically be the case for multiplexed protein analyses 

when high numbers of different proteins are processed 

under “one” condition. Conformational changes and 

thus presentation and accessibility upon protein immo-

bililzation are hardly controllable and will result in a 

potential mixture of the antigenic sites presented by 

each protein on the protein arrays. This might explain 

why the classifiers from the peptide and protein arrays 

were so different at elucidating varying results. How-

ever, upon comparing the classifiers from peptide and 

protein array class prediction analyses, 9 genes, 

namely PCSK1, DGKK, ZNF598, TBC1D9, 

TMEM199, EPB41L3, SAMD6, PRPF38A and C1orf9, 

were found. Among these proteins, EPB41L3 (Dal1) is 

a tumour suppressor molecule which is often lost in 

various cancers, including breast cancer (Heller et al. 

2007). Zn-finger proteins (represented here as 

ZNF598) are also frequently found to be antigenic 

(Backes et al. 2011). These proteins are usually local-

ised in the nucleus and many of them are expressed 

only during embryogenesis. Thus, overexpression in 

various cancers might be able to elicit immune re-

sponses. Another protein that might be relevant in tu-

mour biology is Dyacilglycerol-kinase-kappa 

(DGKK). Diacylglycerol kinases catalyze the phos-

phorylation of diacylglycerol, which is a key intracel-

lular signalling molecule able to activate protein kinase 

C pathways, one of the most important targets of onco-

therapy (Ron & Kazanietz 1999). 

 Using the genes corresponding to all the clas-

sifiers obtained from peptide and protein arrays, an 

over-representation analysis (ORA) was performed. 

An over-representation of the genes associated with 

spliceosomes was observed in the classifiers from both 

peptide and protein arrays. A plausible explanation for 

this can be deduced from the hypothesis put forward 

by Tan (1989) and Hardin (1986). These authors hy-

pothesise that auto-antibodies often target protein com-

plexes rather than a single protein. One conceivable 

explanation might be that cancer growth and invasion 

releases cell debris into circulation and as a conse-

quence, evokes an immune response. Spliceosomes 

which are involved in alternative splicing may have a 

role in tumourigenesis. Processes like cell cycle con-

trol, signal transduction, angiogenisis, metastasis and 

apoptosis may be affected, as alternative splicing af-

fects the majority of the human genes. Two-thirds of 

all the human gene transcripts are known to undergo 

alternative splicing. Although the function of the en-

coded protein does not alter in most of the cases, some 

may exhibit a malignant phenotype (van Alphen et al. 

2009). 

 ORA of the classifiers from the peptide array 

revealed an over-representation of genes associated 

with the ribosome and the pentose phosphate pathway. 

Like spliceosomes, ribosomes are frequently targeted 

by auto-antibodies (Backes et al. 2011). Apart from 

playing a pivotal role in translational regulation, the 

ribosomal proteins are also associated with processes 

like cellular transformation, tumour growth, aggres-

siveness and metastasis (Zhu et al. 2001). Similarly, 

the pentose phosphate pathway plays an important role 

in tumour proliferation by supplying reduced levels of 

nicotinamide adenine dinucleotide phosphate (NADP) 

and carbons for intracellular anabolic processes in can-

cerous cells (Boros et al. 1998). 

 Over-representation of the genes associated 

with endocytosis was also found among genes corre-

sponding to the protein array classifiers. Deregulated 

expression of the endocytosis proteins may play a role 

in human cancers by affecting the control of cell pro-

liferation. The enhancement of cell replication may be 

promoted through impaired endocytosis as a result of 

prolonged signalling by growth-factor receptors (Floyd 

& De 1998). The genes from the protein array classi-

fier also showed enrichment of the sequence motifs 

such as coiled coils and ELR motifs. These sequence 

motifs may have autoantigenic potentiality (Backes et 

al. 2011; Dohlman et al. 1993). Chemokines with the 

ELR motifs activate the leukocytes, which in turn, trig-

ger an immune response (Strieter et al. 2004). 

 Although recombinant protein expression in E. 

coli has been a method of choice, the process is riddled 

with problems, such as the amount, length and differ-

ent forms of the desired protein to be expressed 

(Baneyx 1999). Expression of recombinant proteins in 

E. coli often leads to the formation of biologically in-

active inclusion bodies (Singh & Panda 2005). Above 

all else, the process of high-throughput recombinant 

protein expression and purification is both time con-

suming and cumbersome. Shorter peptide sequences of 

the protein can recapitulate its biological activity and 

can therefore act as an alternative to a full-length re-

combinant protein (Min & Mrksich 2004).  Synthetic 

peptides can mimic the biological activity of a protein 

and present a simple means for synthesis and manipu-

lation. These peptides are also inexpensive to synthe-

size and are highly stable (Cretich et al. 2006; Uttam-

chandani & Yao 2008). In addition, purified proteins 
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from expression clones may contain a host protein 

background. When using proteins on arrays expressed 

in E. coli, one may encounter the problems associated 

with the E. coli specific reactivity for the evaluation of 

patient sera. With the usage of short synthetic peptides, 

the problem of E. coli or host specific reactivity can be 

avoided. These salient features make them a desirable 

candidate to replace protein arrays. 

 

Conclusion 
 

Protein microarrays were generated using 642 expres-

sion clones found sero-reactive with breast cancer, be-

nign breast tumours and healthy controls in a TAA 

macroarray screen. Antigenic peptides were deduced 

from clone sequences and corresponding peptide mi-

croarrays were produced. Both protein and peptide 

arrays were then processed with serum samples from 

individuals with breast cancer, benign breast tumours 

and healthy controls. Classification success of the 3 

sample groups was moderate using protein microar-

rays. The peptide arrays enabled classification of the 

serum samples with reasonable sensitivities and speci-

ficities. Through the use of peptide arrays, the difficul-

ties associated with the protein arrays can be circum-

vented and thus provide a robust platform for early 

diagnosis of cancer. However, in order to establish 

peptide arrays as a potential breast cancer diagnostic 

tool, test sensitivities and specificities should be in-

creased through additional antigenic peptides which 

then have to be thoroughly validated on larger sets of 

serum samples. This study shows that in silico de-

signed peptides improve the classification success and 

peptide microarrays can thus be a good alternative to 

protein arrays for auto-antibody based biomarker de-

velopment. 
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