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Abstract

The simplicity and potential of minimally invasive
testing using sera from patients makes auto-antibody
based biomarkers a very promising tool for use in can-
cer diagnostics. Protein microarrays have been used for
the identification of such auto-antibody signatures.
Because high throughput protein expression and purifi-
cation is laborious, synthetic peptides might be a good
alternative for microarray generation and multiplexed
analyses.

In this study, we designed 1185 antigenic pep-
tides, deduced from proteins expressed by 642 cDNA
expression clones found to be sero-reactive in both
breast tumour patients and controls. The sero-reactive
proteins and the corresponding peptides were used for
the production of protein and peptide microarrays. Se-
rum samples from females with benign and malignant
breast tumours and healthy control sera (n=16 per
group) were then analysed. Correct classification of the
serum samples on peptide microarrays were 78% for
discrimination of ‘malignant versus healthy controls’,

72% for ‘benign versus malignant’” and 94% for
‘benign versus controls’. On protein arrays, correct
classification for these contrasts was 69%, 59% and
59%, respectively.

The over-representation analysis of the classi-
fiers derived from class prediction showed enrichment
of genes associated with ribosomes, spliceosomes, en-
docytosis and the pentose phosphate pathway. Se-
quence analyses of the peptides with the highest sero-
reactivity demonstrated enrichment of the zinc-finger
domain. Peptides’ sero-reactivities were found nega-
tively correlated with hydrophobicity and positively
correlated with positive charge, high inter-residue pro-
tein contact energies and a secondary structure propen-
sity bias. This study hints at the possibility of using in
silico designed antigenic peptide microarrays as an
alternative to protein microarrays for the improvement
of tumour auto-antibody based diagnostics.

Introduction

Breast cancer is the leading tumour type in women,
with an estimated 1 million new cases worldwide each
year (Pisani et al. 2002; Sturgeon et al. 2008). An in-
creased survival rate is highly correlated with an early
detection of malignancy, making diagnostics a critical
tool in cancer prevention. Over the past decades sev-
eral diagnostic tools have been developed and used in
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screening programmes, such as mammography, ultra-
sound imaging and magnetic resonance imaging (MRI)
(Piura & Piura 2011). These are all able to detect prob-
able malignancies; however, definitive answers still
require biopsy and histopathological examination.
Blood-based biomarker discovery is an emerg-
ing field of cancer research which seeks to identify
specific and sensitive markers, enabling clinicians to
make decisions with great accuracy and reliability.

© The Author(s) 2012. Published by Lorem Ipsum Press.



130 Journal of Molecular Biochemistry, 2012

Detection of tumour-associated auto-antibodies from a
few drops of blood may provide a possibility to screen
patients with the suspicion of breast cancer or even
before, through periodical examination. Tumour-
associated antibodies can be identified through selec-
tive binding to special antigens, called ‘tumour-
associated antigens’ (TAAs). TAAs derived from aber-
rantly expressed proteins during the onset and progres-
sion of cancer development, display ‘non-self’ epi-
topes which trigger the immune system to remove
them. The observed antigenicity has been attributed to
multiple features of cancer growth, including accumu-
lated mutations in cancer cells (e.g. point mutations,
translocations), overexpression and translation of
‘differentiation genes’ or improper post-translational
modification (Backes et al. 2011). These molecules
usually possess important functions in tumourigenesis,
such as regulation of the cell cycle, cell proliferation
and apoptosis (Ullah & Aatif 2009). Previous studies
have already elucidated several TAAs from the sera of
breast cancer patients, such as MUC1, HSP90, HER2/
neu, c-myc, NY-ESOI/LAGEl and Lipophilin B
(Carter et al. 2003, Chapman et al. 2007, Conroy et al.
1995, Disis et al. 1994). Auto-antibodies against p53
tumour suppressor proteins were also detected in the
sera of 9-26% of women with breast cancer
(Montenarh 2000). However, it has been shown that
through assaying of sera, reactivity for a single TAA is
neither sensitive nor specific enough to discriminate
between healthy individuals and cancer patients. Thus
a combination of multiple TAAs would be preferred to
generate a diagnostic classification tool.

Several methods have been developed to iden-
tify, screen and validate discriminative TAAs. SEREX
(Serological Analysis of Recombinant Expressed
cDNAs) and SERPA (Serological Proteomics Analy-
sis) are such methods, employed to identify de novo
TAAs directly from tumour cells (Lu et al. 2008). Al-
though these methods have been used successfully to
uncover new antigens (Hamrita ez al. 2008, Qian ef al.
2005, Stempfer et al. 2010), the drawback of these
technologies is that they are labour intensive and only
applicable on a small scale. Higher throughput meth-
ods such as protein macro- and microarrays allow for
simultaneous quantification of serum reactivity of
thousands of proteins. One of the major challenges of
these applications is the requirement of a huge number
of in-frame ¢cDNA clones and the subsequent expres-
sion and purification of the cognate proteins from
them. The physicochemical properties (e.g. length vs.
hydrophobic domains) of expressed proteins are usu-
ally highly variable and displaying the associated reac-
tive epitopes upon immobilisation can be hardly con-
trolled.

Peptide microarrays represent another alterna-
tive solution as shorter peptide sequences may reca-
pitulate the biological function (i.e. the antigenic epi-
tope) of the corresponding protein (Cretich ef al. 2006;
Uttamchandani & Yao 2008). Production of synthetic
peptides is a well established technique and using pep-
tide arrays as a potential alternative to protein arrays
would have several advantages. The concept of the
peptide array was first proposed by Southern in 1988
(Southern 1988). Techniques like photolithographic
peptide synthesis on a glass surface (Fodor et al. 1991)
and the SPOT-synthesis technology (Frank 2002) have
accelerated the applications of synthetic peptides in
microarray experiments (Shin ez al. 2005).

In this report we evaluate the performance of a
SPOT-synthesized peptide microarray. This technol-
ogy utilizes the traditional finoc chemistry to synthe-
size peptides in single droplets immobilized on the
surface of slides. Based on a semi-empirical method
developed by Kolaskar and Tongaonkar (Kolaskar &
Tongaonkar 1990), we deduced antigenic peptides
from a set of previously identified, protein microarray-
derived, antigenic proteins. We probed these peptides
with sera from breast cancer patients and individuals
with benign breast nodules, whilst compared them
with samples from healthy donors. We further evalu-
ated the identified sero-reactive peptides using bioin-
formatics tools and defined panels of TAAs, which are
able to discriminate between samples of healthy con-
trol, malignant and benign tumours.

Materials and Methods

Serum Samples

Serum samples were obtained after the consent of the
breast cancer patients and healthy female volunteers.
The samples were then stored at -80°C. The study was
approved by the Ethics Committee of the Medical Uni-
versity of Vienna, the General Hospital of Vienna
(study number: 143/2007) and all procedures were car-
ried out in compliance with the Helsinki Declaration.
For the protein and peptide microarray analysis of
breast cancer serum biomarkers, 48 serum samples
(malignant n=16; benign n=16; healthy n=16) were
used. The clinical and the pathological cohorts of the
serum samples are described in Table 1. All the 16 ma-
lignant samples were collected from patients diag-
nosed with invasive ductal carcinoma and tested posi-
tive to HER2/neu. Furthermore, the benign samples
were collected from patients diagnosed with fibroade-
noma. Healthy control serum samples (n=16, mean age
76.9+7.15), were collected from healthy volunteers
who presented no personal or familial history of breast
or ovarian cancer.



Journal of Molecular Biochemistry, 2012 131

Table 1. Clinical and pathological data of the patient-study
cohort. Benign and maligant samples were collected from
patients with fibroadenomas and invasive ductal carcinoma,
respectively.

Benign (n=16) M(“I:flngnt
Age (years)® 52.5+4.9 53.75+8
Grading”
Gl - 1
G2 - 5
G3 - 10
QOestrogen receptor ) 9
positive
pT stage®
pT1; pTlb; pTlc; i 3;3; 7,
pT1lmic; pT2 1;2
pN stage!
pNO; pN1; pNla; ) 7; 15 1;
pN2; pN2a; pN3 1;3;2
Metastasis stage®: i 6
Mo
Menopause status’
Pre-menopause 3 4
Post-menopause 8 11

"The age of the patients is represented as a mean
(agetstandard deviation).

’G1 (low-grade), G2 (intermediate grade) and G3 (high-
grade). Low-grade tumours are usually slow growing and
are less likely to spread. High-grade tumours are likely to
grow more quickly and are more likely to spread.

‘pT1: Tumour 2.0 cm or less in dimension; pT1b: Tumour
between 0.5 and 1 cm in dimension; pTlc: Tumour be-
tween 1.0 and 2.0 cm in dimension; pT1mic: Microinva-
sion 0.1 cm or less in dimension; pT2: Tumour between
2.0 and 5.0 cm in dimension.

9pN stage: information available for 15 patients. pNO: No
regional lymph node metastasis; pN1: Metastasis to mov-
able ipsilateral axillary lymph node(s); pN1la: Only micro-
metastasis (none larger than 0.2 cm); pN2: Metastasis to
ipsilateral axillary lymph node(s) fixed to each other or to
other structures; pN2a. Metastasis in 4-9 axillary lymph
nodes, including at least one that is larger than 2 mm; pN3:
Metastasis to ipsilateral internal mammary lymph node(s).
‘Metastasis stage: information from 6 patients. M0: No
distant metastasis.

"Information from 11 benign and 15 malignant samples.

Protein extraction and purification

In an earlier study, 642 clones were identified from a
collection of 38,016 cDNA expression E. coli clones
(hEx1 library (Bussow et al. 2000)), which reacted
positively to the sera from the breast cancer patients
and the healthy control individuals. For the recombi-

nant protein expression in E. coli and protein purifica-
tion, the procedure developed by Stempfer et al. was
followed (Stempfer et al. 2010). In brief, the cDNA
expression clones were cultured in 96 deep well plates
and were induced by an autoinduction strategy for re-
combinant protein production. The expressed His-
tagged proteins were then purified using Ni-NTA aga-
rose and eluted in microarray spotting buffer (50 mM
KH,PO4 and 50 mM K,HPO,, pH 8.0, 500 mM imida-
zole, 0.01% SDS and 0.01% NaN3).

Design of Antigenic Peptides

Peptides corresponding to the 642 reactive proteins
were designed as an alternative to the recombinant pro-
teins found reactive in the initial membrane screening.
To predict the antigenic peptides, the EMBOSS tool
“Antigenic”  (http://liv.bmc.uu.se/cgi-bin/emboss/
antigenic) was used. The minimum length of the pre-
dicted peptide sequences is 6 amino acids (aa). The
“Antigenic” tool employs a semi-empirical method
developed by Kolaskar and Tongaonkar for the selec-
tion of antigenic peptide sequences. This method uses
the physicochemical properties of amino acid residues
and their frequencies of occurrence in experimentally
known segmental epitopes to predict antigenic deter-
minants on proteins (Kolaskar & Tongaonkar 1990).

The DNA sequence was available for 596 of
the 642 clones. Of those, 581 clones were unique and
used for antigenic peptide prediction. The default set-
tings of the “Antigenic” tool were used, and for each
unique clone sequence, 2-3 different peptides were
selected based on antigenicity score and peptide-
length. In trying to achieve uniform synthesis, peptides
sized 8-10 aa were selected. Based on the maximum
antigenicity score, antigenic peptides which were
longer than 10 aa were shortened. For antigenic motifs
shorter than 8 aa peptides, N terminal aa’s correspond-
ing to the template sequence were added. In addition,
tetanus specific antigenic peptides were designed for
the NCBI reference sequence NP 783831; 56 tetanus
specific peptides were selected from all potential anti-
genic peptides based on their maximum antigenicity
score. Furthermore, peptides of 10 aa in length were
selected for synthesis as described above.

In order to find over-represented motifs in the
peptide set, sequences were submitted to MEME motif
search web-based tool (http://meme.nbcr.net). The mo-
tif was considered as ‘enriched’ if it had at least 5 se-
quences (sites) with an E-value less than 0.001. Motif
searching was also performed on peptide sequences
with high sero-reactivity (defined as median log2 in-
tensities >13 of all 48 samples analysed; min.: 6.21;
max.: 15.84).



132 Journal of Molecular Biochemistry, 2012

Microarray production

The procedure for the protein microarray production
has been described in our previous study (Stempfer et
al. 2010). In brief, the protein microarrays were gener-
ated using the purified recombinant proteins obtained
from the cDNA expressing E. coli clones. These puri-
fied proteins were spotted using an Omnigrid arrayer
(GeneMachines, San Carlos, CA) with SMP 3 pins
(TeleChem International Inc., Sunnyvale, CA) under
adjusted air humidity; between 55% and 60%. Spots
were printed in duplicates on ARChip Epoxy slides
(Preininger et al. 2004) and each microarray contained
4 identical subarrays. The crude protein extract of the
E.coli host was used for positive control spots, and
plain buffer spots were used as negative controls.

For the generation of peptide microarrays, 1212 clone-
specific and 56 tetanus specific short peptides were
synthesized using SPOT synthesis technology (JPT
Peptide Technologies GmbH, Berlin, Germany). Ami-
nooxy-acetylated peptides were synthesized in parallel
on cellulose membranes. Once the de-protection of the
side chain was achieved, the solid phase-bound pep-
tides were transferred to 96 well microtitre filtration
plates (Millipore, Bedford, USA). These peptides were
cleaved from the cellulose membranes using 200 ml of
aqueous triethylamine (0.5% v/v). The triethylamine-
peptide solution was filtered and evaporated under re-
duced pressure to remove the solvent. This was fol-
lowed by re-dissolving the resultant peptide deriva-
tives (50 nmol) in 25 mL of spot buffer (70% DMSO,
25% 0.2 M sodium acetate pH 4.5, 5% v/v glycerol).
The re-dissolved peptide solution was then transferred
into 384 well microtitre plates and used for the genera-
tion of the peptide arrays. Two droplets of 0.5 nL pep-
tide solution (1 mM) were immobilized in triplicates
on ARChip Epoxy slides (Preininger et al. 2004), con-
taining 4 identical sub-arrays on each slide. For the
immobilization of the peptide solution, a non-contact
printer Nanoplotter (GESIM, Groberkmannsdorf, Ger-
many) fitted with a piezoelectric NanoTip (GESIM)
was used. Apart from the peptides derived from the
cDNA clone-proteins, human Immunoglobulins (Igs)
(IgA, IgE, IgG and IgM) and 56 tetanus toxin (TT)
specific peptides were also immobilized on the peptide
microarrays. The human Igs and TT specific peptides
were used as positive controls, while the empty buffer
spots were used as negative controls.

Microarray processing

The microarrays were blocked with DIG easy Hyb
(Roche Applied Science, Vienna, Austria) for 30 min
and then washed twice in Phosphate Buffered Saline
with 0.1% Tween 20 (PBST) for 5 min. Breast cancer

serum samples (benign; n=16 and malignant; n=16)
and control sera (n=16) diluted in a 1:10 ratio with
PBST were applied onto the microarrays and incubated
for 2 hours. The microarrays were then washed twice
in PBST for 5 min. This was followed by incubation
for 30 min with goat anti human IgG detection anti-
body, fluorescently labelled with Alexa647 dye
(Invitrogen, Vienna, Austria), diluted 1:500 in
PBST+3% non-fat dry milk powder. Later, the mi-
croarrays were washed twice in PBST for 5 min. The
array images of the processed slides were then cap-
tured using an Axon Genepix 4000A microarray scan-
ner (Molecular Devices, Union City, CA).

Data analysis

Fluorescent intensity values (median after subtraction
of the local background) were calculated from the
scanned images using the Genepix software
(Molecular Devices). Statistical analysis of the mi-
croarray experiments was performed using the BRB-
ArrayTools software 3.8.1 [http://linus.nci.nih.gov/
BRB-ArrayTools.html] developed by Dr. R Simon and
Amy Peng Lam (Simon et al. 2007). The log,-
transformed values of the signal intensities obtained
from the scanned images of the processed microarrays
were used for the analysis. The peptide microarray
data were normalized using the “house-keeping gene”
normalisation option within BRB-ArrayTools using
the “Tetanus peptides” and “Igs” spots as normalisa-
tion features. For the data from protein microarrays, a
global normalization was used to normalize each array
using the relative median over all the log intensity val-
ues within one experiment. To identify the proteins/
peptides expressed differentially between classes, a
random-variance t-test was applied to the data sets
(Wright & Simon 2003). Significance of differentially
expressed proteins/peptides were then ranked using the
p-value (0.05 and 0.01 for protein and peptide microar-
ray data, respectively) from the univariate test. Further
statistical data analysis was performed using R version
2.6.2 (R Development Core Team 2005).

For defining a classifier set of antigenic pro-
teins and peptides, the class prediction tools imple-
mented in BRB-ArrayTools were used and leave-one-
out cross validation (LOOCV) was conducted. Differ-
ent classification algorithms (compound covariate, k
nearest neighbour (k=1 and k=3), nearest centroid,
support vector machines, diagonal linear discriminant
analyses and Bayesian compound covariate prediction)
were run for model generation. The model incorpo-
rated the features that were differentially expressed
among all the microarray-features at the 0.01 and 0.05
significance level as assessed by the random variance t
-test, respectively (Wright & Simon 2003). We esti-
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mated the prediction error for each model using
LOOCV, as described by Simon and colleagues
(Simon et al. 2003). For each LOOCYV training set, the
entire model building process was repeated, including
the peptide and protein selection process. We also
evaluated whether the cross-validated error rate esti-
mate for a model was significantly less than one would
expect from random prediction. The class labels were
randomly permuted and the entire LOOCV process
was repeated. The significance level is the proportion
of the random permutations that gave a cross-validated
error rate no greater than the cross-validated error rate
obtained with the real data. Cross-Validation receiver
operating curve (ROC) analyses from the Bayesian
Compound Covariate Predictor were conducted and
the ‘area under the curve’ (AUC) values were calcu-
lated as implemented in ‘BRB-ArrayTools’ class pre-
diction tools.

Over-representation analysis

An over-representation analysis (ORA) of the classifi-
ers derived from the microarray experiments was per-
formed using the gene set enrichment analysis tool
“GeneTrail” (Keller et al. 2008). The classifiers from
the peptide microarray analysis were traced back to the
proteins they were derived from and the ORA was per-
formed using the corresponding gene Ids. Similarly,
the classifiers from the protein array analysis were
used for the ORA. For ORA, a reference set was com-
pared to the test sets (genes corresponding to the clas-
sifiers). All annotated human genes (NCBI GenelDs)

4000

3000
|

Frequency

2000
|

1000

o -

T T T T 1
0 20 40 60 80

aa

Figure 1. Length distribution of 4492 peptides. The figure
shows the frequency of occurrence (Y-axis) of the peptides
with regards to the length of the antigenic motif (X-axis). A
relatively high frequency of occurrence was observed for
the short-length peptides.

were used as reference set and a ‘hypergeometric dis-
tribution test’ was performed for computing P-values.
The significance value of 0.05 (Benjamini and Ho-
chberg adjusted) was chosen.

Results

Antigenic motif search
Out of 642 clone-proteins, which were used for the
protein microarray production, sequences of 596 pro-
teins were available. All 3 possible reading frames of
DNA sequences coding for proteins were collected and
checked for the longest uninterrupted ORF sequence.
After eliminating the duplicates, we found 581 unique
sequences which were used for antigenic motif search.
Using the “Antigenic” tool we obtained 4492 antigenic
peptides for these 581 clone-sequences, resembling an
average of 7.73 peptides per clone. When the length of
the 4492 antigenic peptides were plotted against fre-
quency of occurrence, a high frequency of occurrence
was observed with peptides of length ranging from 6 to
20 amino acids (Figure 1) and also, a uniform distribu-
tion of antigenic motifs were found along the 581
clone-sequences subjected to peptide design (Figure
2).

Of the 4492 antigenic motifs 2866 were
unique motifs. From the latter, 2-3 peptides per clone

Score

T T T T T T T T
10 20 30 40 50 60 70 80

LENGTH(aa)

Figure 2. Distribution of 4492 antigenic motifs along the
581 clone sequences. The x-axis depicts the start amino acid
position within the targeted clone-sequences; on the y-axis,
the length of the antigenic-peptides is depicted. A uniform
distribution of the antigenic motifs was observed along the
clone sequences. Density of plotted antigenic motifs is high-
est for short peptides (<20mers; y-axis).
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Figure 3. Length distribution of 1185 single peptides. The
frequency of occurrence (Y-axis) of the peptides with re-
gards to the length of the antigenic motif (X-axis) is shown.

were selected which had maximum scores (1.3 to
0.987) and thus identified 1212 peptides. Out of these
1212 peptides, 53%, 33.7% and 13.2% of the peptides
were 8-10, 7-14 and more than 14 aa long, respectively
(Table 2). Peptides with lengths ranging 6 to14 were
present at highest frequency compared to the longer
peptides (Figure 3). These 1185 single peptides, in-
cluding the human Igs and the 56 TT specific peptides
were used for the peptide array production.

Serum reactivity of ‘antigenic’ peptide arrays
Median intensities of each duplicate peptide spot from
the 48 microarray analyses were calculated and used to

ntensity

evaluate the correlation of serum-reactivity towards the
‘antigenicity score’ and the influence of aa addition or
removal from the antigenic motif (peptide lengths were
adjusted in order to synthesize and spot 8-10 aa pep-
tides; see Methods). We could not find any correlation
of microarray signal intensities with ‘length adjust-

Number of Number of
Length (aa) peptides clones
8-10 643 329
7-14 409 79
>14 160 55

0%

Table 2. Number of peptides with regards to the length of
the antigenic motifs and the number of the corresponding
clones.

ment of peptides’ and ‘antigenicity scores’ (Figure 4).
Furthermore peptides were converted into nu-
merical representations and subjected to linear correla-
tion analysis with median and maximum intensities.
Overall 3697 amino acid and sequence parameters
were used for this alternative representation. Of these,
the majority was derived from AAINDEX (http://
www.genome.jp/aaindex/), augmented by a few fea-
ture descriptors commonly used in QSAR analysis and
basic amino acid statistics, including simplified alpha-
bets (Sollner 2006). B-cell antigenicity was estimated
using a previously presented regression model and se-
quence entropy using a composition biased method
(Sollner et al. 2008). Susceptibility to proteasomal
processing was assessed using netChop (Kesmir et al.
2002). Affinity for 43 MHC alleles was predicted us-
ing netMHC (Lundegaard et al. 2008) and highest af-
finities mapped to respective supertypes. For all single

B
|

- ‘ DO O o O

medan intens

Figure 4. Antigenic reactivity derived from 48 samples. Median peptide array intensities (log2 transformed) were plotted ver-
sus the ‘antigenicity score’ (A), and the ‘length adjustment’ (denoted “pos”). Positive values correspond to the number of aa
added, negative values to aa removed from the antigenic motifs for the generation of §-10aa peptides for array spotting (B).
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aa parameters, averages over the entire peptide, N- and
C-terminal residues were computed.

The features with the highest positive or nega-
tive correlation (in the order of -0.5 and +0.45, respec-
tively) all originate among physico-chemical proper-
ties, in particular hydrophobicity, inter-residue contact
energy, secondary structure and charge related proper-

16
]

ty
12 14
1 1

median_intensi

WILMS50101

Figure 5. Scatter plot of the peptides parameterized using
the hydrophobicity scale by Wilce et al. (WILM950101 on
x-axis) versus the median peptide array intensities (log2
transformed on y-axis).

ties. A scatter plot of the maximally correlated feature,
a hydrophobicity scale by Wilce et al. (Wilce et al.
1995), is shown in Figure 5. The scatter plot clearly
supports a linear dependency and a selection of other
substantially correlated peptide properties is listed in
Table 3. Measured median intensities are particularly
negatively correlated with hydrophobicity and posi-
tively correlated with both positive charge and high
inter-residue protein contact energies. The existence of
a possible secondary structure propensity bias is also
apparent.

Motif enrichment analysis

Motif enrichment analysis was performed on our mi-
croarray peptide set (1185 peptides) using the MEME
motif discovery tool (Bailey & Elkan, 1994; http://
meme.sdsc.edu/meme/). The most significant and
highly represented motif found was similar to Zn-
finger domains of Zn-H2C2-type (Fig. 6A, see
pfam13465: zf-H2C2_2). The motif logo consisted of
26 sequences and the diagram clearly depicts the
highly weighted two central cysteines, separated by
two other amino acids. Seemingly the first two amino
acids (proline and tyrosine) also have a conserved role
to constitute these domains (Figure 6A). In a second
screen, only those peptides were considered in the
analysis that gave high intensity values (median log2
>13). The analysis of highly reactive peptides eluci-
dated similar results: the only significantly enriched
motif was again the previously identified Zn-finger

Table 3. Physico-chemical parameters maximally correlated with the median intensity derived from the peptide arrays proc-
essed with 48 serum samples. Correlation coefficients scale between -1 and 1, indicating negative and positive correlation, re-

spectively.
Correlation to
Parameter median Type URL
intensity
WILM950101 -0.53 negative http://www.genome.jp/dbget-bin/www_bget?aaindex:WILM950101
COWR900101 -0.53 negative http://www.genome.jp/dbget-bin/www_bget?aaindex:COWR900101
GUODS860101 -0.52 negative http://www.genome.jp/dbget-bin/www_bget?aaindex:GUOD860101
NAKH920108 -0.52 negative http://www.genome.jp/dbget-bin/www_bget?aaindex:NAKH920108
JURD980101 -0.51 negative http://www.genome.jp/dbget-bin/www_bget?aaindex:JURD980101
MONM990101 0.48 positive http://www.genome.jp/dbget-bin/www_bget?aaindex:MONM990101
FAUJ880111 0.46 positive http://www.genome.jp/dbget-bin/www_bget?aaindex:FAUJ880111
CHOP780207 0.46 positive http://www.genome.jp/dbget-bin/www_bget?aaindex:CHOP780207
MIYS990102 0.45 positive http://www.genome.jp/dbget-bin/www_bget?aaindex:MIYS990102
MIYS990101 0.45 positive http://www.genome.jp/dbget-bin/www_bget?aaindex:MIYS990101
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(Figure 6B). Since only 385 sequences were used in
this analysis these motifs were “shorter” (8 amino ac-
ids) and again clearly depicted the Zn-finger domain
characteristics for the superfamily. The finding that Zn
-finger domains presented in our peptide array analy-
ses as highly sero-reactive, confirms their antigenicity.
These findings are concordant with previous reports,
which found several members of Zn-finger proteins as
tumour-associated antigens (Ludwig et al. 2012).

Microarray analysis
The data obtained upon processing the protein and the

A B
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34 3
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Figure 6. Sequence logos of enriched motifs. (A) Sequence
logo depicting the most significant motif (E-value: 1.0-
€100, 26 sites). (B) Analysis of peptides with high experi-
mental signal intensity (median log2>13) giving very simi-
lar results (E-value: 9.8e-23, 11 sites). MEME sequence
logos represent probability matrices that specify the prob-
ability of each letter in all possible positions.

MEME (n0 S5C)5.4.201205:28

peptide microarrays with the breast cancer (n=16), be-
nign fibroadenomas (n=16) and healthy control (n=16)
sera was subjected to statistical evaluation. The class
prediction of the samples was performed using BRB-
ArrayTools and the performance of algorithms with

the highest correct classifications is depicted.

We elucidated a marker-set of 54 peptides
(Table 1S; see supplementary data) which enabled
78% correct classification using the “compound co-
variate classifier” of malignant samples and healthy
controls with 75% sensitivity and 81.2% specificity
(Table 4). The ROC curve derived from this class pre-
diction (Figure 7A) demonstrated AUC values of
0.758. For the prediction of the same classes on protein
array, a marker-set of 57 proteins was deduced (Table
2S; see supplementary data). These proteins enabled
the 69% correct classification of the malignant samples
and healthy controls with 62.5% sensitivity, 75%
specificity (Table 4) and an AUC value of 0.68
(support vector machine classifier) (Figure 7B).

For class prediction of the benign and malig-
nant samples on peptide arrays, we elucidated 9 pep-
tides (Table 3S; see supplementary data) which en-
abled correct classification of 72% (3-Nearest
Neighbours classifier) with 62.5% sensitivity and
81.2% specificity (Table 4) An AUC value of 0.6 was
observed for this classification (Figure 7D). Similarly
on the protein array, 17 proteins (Table 4S; see supple-
mentary data) enabled 59% correct classification (1-
Nearest neighbour) of benign and malignant samples
with 87.5% sensitivity, 31.2% specificity (Table 4) and
an AUC value of 0.461 (Fig. 7E) (Table 4).

The class prediction between the benign and
the control samples yielded 17 peptides (Table 5S; see
supplementary data) which gave 93.8% sensitivity and
specificity with 94% correct classification (1-Nearest
Neighbour classifier method) (Table 4). The observed
AUC value of the ROC curve for this class prediction

Table 4. Class predication of benign, malignant and control samples using peptide and protein arrays.

. . Correctly e
Classes Microarray Classification classified Sensoltmty Specolﬁmty PPV NPV | AUC
method (%) (%) (%)
Compound
Malignant Peptide covariate 78 75 81.2 0.8 0.765 | 0.758
Vs. predictor
Control Protein Support vector 69 62.5 75 0.714 | 0.667 | 0.68
machine
. 3-Nearest
Benign Peptide neighbours 72 62.5 81.2 0.769 | 0.684 | 0.6
Vs.
Malignant Protein I-Nearest 59 87.5 312 0.56 | 0.714 | 0.461
neighbour
. Peptide I-Nearest 94 93.8 93.8 0.938 | 0.938 | 0.852
Benign neighbour
Vvs. Compound
Control Protein covariate 59 62.5 56.2 0.588 0.6 0.648
predictor

PPV: positve predictive value. NPV: negative predictive value. PPV and NPV correspond to the proportion of samples with
positive and negative test results, respectively, which are correctly diagnosed.
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was 0.852 (Figure 7F). From the protein microarray
data, we elucidated a panel of 35 proteins (Table 6S;
see supplementary data) which enabled 59% correct
classification (compound covariate classifier) of be-
nign and control samples; sensitivity was 62.5%,
specificity was 56.2% (Table 4) and the corresponding

AUC value was 0.648 (Figure 7G). Upon comparing
the classifiers derived from all the class predictions
performed on peptide and protein arrays, we identified
9 overlapping proteins corresponding to the genes:,
PCSKI, DGKK, ZNF598, TBCID9, TMEM]I99,
EPB41L3, SAMDG6, PRPF384 and Clorf9.
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Figure 7. Cross-Validation ROC curves from the Bayesian Compound Covariate Predictor. The figures A, D and F represent

the ROC curves obtained from the class predictions performe
represent the ROC curves from the class predictions obtained
sent the ROC curves from the class predictions obtained from

d using the data from the peptide arrays. The figures B, E and G
from the protein microarray analysis. The figures C and H repre-
the protein array analyzed using the proteins corresponding to the

respective peptide array classifiers. The x-axes and y-axes represent the false positive rate (1-specificity) and true positive rate
(sensitivity), respectively. The ROC curves A, B and C represent the class prediction of malignant and control samples. The
class predictions of benign and malignant samples are represented by the ROC curves D and E. Similarly, the ROC curves F, G
and H represent the class prediction of the benign and control samples.
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Using the clone-proteins (recombinantly ex-
pressed proteins from the cDNA expression clones)
corresponding to the classifier peptides derived from
the class prediction of malignant and control samples,
a set of 4 proteins (Table 7S; see supplementary data)
were deduced which enabled a correct classification of
66% (compound covariate classifier), with 56.2% sen-
sitivity, 75% specificity and an AUC value 0.688
(Figure 7C). The class prediction of malignant and be-
nign samples was not possible using the clone proteins
corresponding to the classifier peptides. The clone pro-
teins corresponding to the classifier from the class pre-
diction of benign and the control samples enabled a
72% correct classification (compound covariate classi-
fier) of the same classes with 2 clone proteins (Table
8S; see supplementary data). For this class prediction,
68.8% sensitivity, 75% specificity and an AUC value
0f 0.793 (Figure 7H) were observed.

Higher percentages of the correct classification
were observed on peptide arrays compared to the same
contrasts on protein microarray data (Table 4). For ex-
ample, when malignant samples were compared to
healthy controls, peptide arrays gave 9% more correct
classification compared to protein arrays. Similarly,
peptide arrays gave a 13% and 35% increasingly cor-
rect classification for the contrasts between ‘benign vs
malignant’ and ‘benign vs controls’, respectively,
when compared to the protein microarrays.

The signal intensities from all the peptide ar-
ray classifiers were compared with the ones from the

Over-representation analysis of the genes encoding the
classifier peptides from all class predictions on peptide
arrays was performed using the gene set analysis tool
“GeneTrail” (Keller et al. 2008). Out of 57 genes rep-
resenting the peptide classifiers, 3 genes, namely
RPL7A, RPL24 and RPL6 were involved in the KEGG
ribosome pathway. PGLS and ALDOA were found to
be involved in the pentose phosphate pathway, while
ISY1 and PRPF38A4 were involved in the spliceosome
pathway (Table 5). Out of the 57 genes, 7 genes con-
tain a Zn-finger domain and among these 7 genes, 4
genes contain Zn-finger domains of the Zn-H2C2-type.

Protein array classifiers

Similarly, ORA was performed using the genes encod-
ing the classifiers from all the class predictions on the
protein array. 2 genes (RPS34 and RPSI3) out of a
total of 59 representing the protein classifiers were
found to be involved in the KEGG ribosome pathway.
GITI, CHMP4C, EHD2 and GRKI were involved in
the KEGG endocytosis pathway (Table 6). We found
that 28% and 32% of the genes represented by the clas-
sifier proteins contained sequence motifs such as
coiled coils and ELR motifs at p-values equal to
0.0004 and 0.003, respectively. An enrichment of the
protein family domains such as the UBA/TS-N domain
(ubiquitin associated domain found on the N terminus

Table 6. Over-represented genes from the protein array clas-
sifier and the corresponding KEGG pathways

corresponding proteins on the protein arrays. Simi- E Ob-
. . .. . xpected
larly, the signal intensities from all the protein array KEGG p- number served Genes
classifiers were compared to the ones from the corre- pathways | value of genes number
sponding peptides. These comparisons failed to give of genes
any correlation between the peptide and protein array GIT],
Endocyto- CHMP4
Table 5. Over-represented genes from the peptide array :;S?Y 0.006 06 4 C, EHD2,
classifier and the corresponding KEGG pathways GRK1
KEGG | p- | Fxpected | Observed Ribosome | 004 | 02 2 RPS3A,
number number Genes RPS13
pathways value
of genes of genes
Pentose i
PGLS, of EF-TS (elongation factor thermo stable)) and the
phosphate 0.003 0.06 2 4 y .
pathway LDO. TBC domain was also observed.
RPL7A, Discussion
Ribosome 0.003 0.2 3 RPL24,
RPL6 Peptide microarrays displaying synthetic peptides can
Soli 0.04 03 ) IsY1, be used for the detection of antibodies in serum apart
priceosome ' ' PRPF384 from their utility in epitope-mapping, substrate profil-

data (Figures 1S and 28S; see supplemental file).
Over-representation analysis

Peptide array classifiers

ing and probing peptide-ligand interactions (Andresen
et al. 2006; Uttamchandani & Yao 2008). In the con-
text of serodiagnostics, peptide arrays have been used
for the detection of Hepatitis B and C viruses, human
immunodeficiency virus (HIV), Epstein-Barr virus and
syphilis (Duburcq et al. 2004). Li et al. (Li et al.
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2010) used peptide arrays with an extracellular domain
of epidermal growth factor receptor (EGFR) protein
and detected auto-antibodies against an EGFR domain
in the sera of non-small cell lung cancer patients. In
this study, we designed peptides representing sero-
reactive antigenic proteins using the antigenic motif
search tool. We then used peptide microarrays to iden-
tify the auto-antibody signatures against these peptides
in the sera of patients with breast cancer and benign
fibroadenomas as well as healthy females.

The prediction of the antigenic peptides was
performed based on the occurrence of hydrophobic
residues (cysteine, leucine and valine) in a given pro-
tein sequence (Kolaskar & Tongaonkar 1990). This
prediction method predicts the antigenic sites with ap-
proximately 75% accuracy. Using the Antigenic tool
(Selak et al. 2003) we identified antigenic sites within
the sequence of the early endosome antigen 1 (EEA1)
protein with antigenic scores ranging from 1.135 to
1.09. In our study, we used the predicted antigenic mo-
tifs with the antigenic scores ranging from 1.3 to
0.987. The short peptides, with lengths ranging from 4
to 15 aa, are effective enough to identify antibody epi-
topes (Reineke & Sabat 2009). In this study, 86.7% of
the predicted antigenic peptides had varying lengths
from 7 to 14 amino acids. These peptide sequences
were used for deducing the individual peptides and for
the generation of peptide arrays. Peptides with the
highest sero-reactivity of all the 48 samples showed
enrichment of motifs similar to Zn-finger domains,
which can be explained due to the central cysteine be-
ing highly hydrophobic. Moreover, many Zn-finger
proteins contain variable numbers of Zn-finger do-
mains (Iuchi 2001). These features allowed the Anti-
genic tool to label many of these peptides as antigenic.

We have tested another method introduced by
Wilce and colleagues (1995) to see the correlation be-
tween experimental signal intensities and physic-
chemical properties. The physicochemical parameters
maximally correlated with the median intensity de-
rived from the peptide arrays. The peptides’ reactivi-
ties were found particularly negatively correlated with
hydrophobicity while conversely they were positively
correlated with positive charge, high inter-residue pro-
tein contact energies and possibly a secondary struc-
ture propensity bias.

The peptide microarrays were generated using
synthetic peptides designed with the Antigenic tool
using cDNA sequences of seroreactive proteins. At the
same time, protein microarrays were produced using
the recombinantly expressed proteins from the human
cDNAs expressed in E. coli. The peptide and protein
microarrays were used for the evaluation of the same
set of serum samples. On peptide arrays, classification

success for distinguishing the 3 classes of malignant,
benign and control serum samples outperformed pro-
tein arrays during the class prediction analyses. Apart
from the better sensitivities and specificities, ROC
analyses on peptide array data provided higher AUC
values compared to that of protein microarrays (Table
4 and Figure 7).

The binding ability of an antibody to a protein
largely depends on the conformation at the region of
binding. The antibodies specific to the proteins have
the same specificity as long as the binding site is lo-
cated on the surface of the molecule (Geysen et al.
1985). Expression of recombinant proteins in E. coli
often leads to the production of misfolded proteins
(Baneyx & Mujacic 2004). Furthermore, microarray
immobilization of proteins will dramatically change
their conformation and accessibility. These effects
may, in turn, lead to low reproducibility and controver-
sial findings when array-platforms are changed. In our
study, the possibility of having misfolded proteins im-
mobilized onto protein microarray may have attributed
to the identification of classifier proteins which did not
correlate with the results from the peptide microarrays.

As performed here, sero-reactive clones were
identified by a macro-membrane based screening. On
those membranes, E. coli clones were grown, protein
expression was induced and the proteins were immobi-
lized directly on the site of clone growth. For elucida-
tion of the diagnostic value of identified antigenic pro-
teins, microarrays provide today’s best option for con-
firmation and validation of thousands of proteins in
parallel. Biomarker-validation requires analyses of
many patient samples that would thus be best per-
formed on microarrays. However, switching from the
macro-membranes used in biomarker identification to
microarrays requires the isolation of proteins and sub-
sequent spotting on the microarray surfaces. Although
array-variability due to clone cultivation, protein ex-
pression and immobilization directly on each mem-
brane is omitted when microarrays are generated from
purified proteins, conditions are dramatically changed
when moving from macro- to micro-arrays. This might
also be the reason why protein microarrays in our
study have shown up with moderate to low classifica-
tion success of malignant breast cancer, benign breast
nodules and controls. In addition, it has to be noted
that when sero-reactive clones are discovered from e.g.
patients and controls, the different TAA-discovery
technologies like SEREX, macromembranes or phage
display are currently performed using pooled samples
rather than many single samples processed in parallel.
Consequently, even when “differential” TAA profiles
for different pools of sample classes are discovered,
these findings are no warranty for any classification
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success during analyses of single samples.

Since the prediction of the antigenic peptides
was solely based on the protein sequences and each
peptide presented a single antigenic site, there may be
a better chance for auto-antibodies to bind specifically
to a single feature on the microarray. Single spots of
purified proteins however, might present with multiple
antigenic sites and would thus enable binding of multi-
ple antibodies. As already mentioned, this might spe-
cifically be the case for multiplexed protein analyses
when high numbers of different proteins are processed
under “one” condition. Conformational changes and
thus presentation and accessibility upon protein immo-
bililzation are hardly controllable and will result in a
potential mixture of the antigenic sites presented by
each protein on the protein arrays. This might explain
why the classifiers from the peptide and protein arrays
were so different at elucidating varying results. How-
ever, upon comparing the classifiers from peptide and
protein array class prediction analyses, 9 genes,
namely PCSKI, DGKK, ZNF598, TBCIDY,
TMEM199, EPB41L3, SAMDG6, PRPF384 and Clorf9,
were found. Among these proteins, EPB41L3 (Dall) is
a tumour suppressor molecule which is often lost in
various cancers, including breast cancer (Heller et al.
2007). Zn-finger proteins (represented here as
ZNF598) are also frequently found to be antigenic
(Backes et al. 2011). These proteins are usually local-
ised in the nucleus and many of them are expressed
only during embryogenesis. Thus, overexpression in
various cancers might be able to elicit immune re-
sponses. Another protein that might be relevant in tu-
mour biology is Dyacilglycerol-kinase-kappa
(DGKK). Diacylglycerol kinases catalyze the phos-
phorylation of diacylglycerol, which is a key intracel-
lular signalling molecule able to activate protein kinase
C pathways, one of the most important targets of onco-
therapy (Ron & Kazanietz 1999).

Using the genes corresponding to all the clas-
sifiers obtained from peptide and protein arrays, an
over-representation analysis (ORA) was performed.
An over-representation of the genes associated with
spliceosomes was observed in the classifiers from both
peptide and protein arrays. A plausible explanation for
this can be deduced from the hypothesis put forward
by Tan (1989) and Hardin (1986). These authors hy-
pothesise that auto-antibodies often target protein com-
plexes rather than a single protein. One conceivable
explanation might be that cancer growth and invasion
releases cell debris into circulation and as a conse-
quence, evokes an immune response. Spliceosomes
which are involved in alternative splicing may have a
role in tumourigenesis. Processes like cell cycle con-
trol, signal transduction, angiogenisis, metastasis and

apoptosis may be affected, as alternative splicing af-
fects the majority of the human genes. Two-thirds of
all the human gene transcripts are known to undergo
alternative splicing. Although the function of the en-
coded protein does not alter in most of the cases, some
may exhibit a malignant phenotype (van Alphen et al.
2009).

ORA of the classifiers from the peptide array
revealed an over-representation of genes associated
with the ribosome and the pentose phosphate pathway.
Like spliceosomes, ribosomes are frequently targeted
by auto-antibodies (Backes et al. 2011). Apart from
playing a pivotal role in translational regulation, the
ribosomal proteins are also associated with processes
like cellular transformation, tumour growth, aggres-
siveness and metastasis (Zhu et al. 2001). Similarly,
the pentose phosphate pathway plays an important role
in tumour proliferation by supplying reduced levels of
nicotinamide adenine dinucleotide phosphate (NADP)
and carbons for intracellular anabolic processes in can-
cerous cells (Boros ef al. 1998).

Over-representation of the genes associated
with endocytosis was also found among genes corre-
sponding to the protein array classifiers. Deregulated
expression of the endocytosis proteins may play a role
in human cancers by affecting the control of cell pro-
liferation. The enhancement of cell replication may be
promoted through impaired endocytosis as a result of
prolonged signalling by growth-factor receptors (Floyd
& De 1998). The genes from the protein array classi-
fier also showed enrichment of the sequence motifs
such as coiled coils and ELR motifs. These sequence
motifs may have autoantigenic potentiality (Backes et
al. 2011; Dohlman et al. 1993). Chemokines with the
ELR motifs activate the leukocytes, which in turn, trig-
ger an immune response (Strieter et al. 2004).

Although recombinant protein expression in E.
coli has been a method of choice, the process is riddled
with problems, such as the amount, length and differ-
ent forms of the desired protein to be expressed
(Baneyx 1999). Expression of recombinant proteins in
E. coli often leads to the formation of biologically in-
active inclusion bodies (Singh & Panda 2005). Above
all else, the process of high-throughput recombinant
protein expression and purification is both time con-
suming and cumbersome. Shorter peptide sequences of
the protein can recapitulate its biological activity and
can therefore act as an alternative to a full-length re-
combinant protein (Min & Mrksich 2004). Synthetic
peptides can mimic the biological activity of a protein
and present a simple means for synthesis and manipu-
lation. These peptides are also inexpensive to synthe-
size and are highly stable (Cretich et al. 2006; Uttam-
chandani & Yao 2008). In addition, purified proteins
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from expression clones may contain a host protein
background. When using proteins on arrays expressed
in E. coli, one may encounter the problems associated
with the E. coli specific reactivity for the evaluation of
patient sera. With the usage of short synthetic peptides,
the problem of E. coli or host specific reactivity can be
avoided. These salient features make them a desirable
candidate to replace protein arrays.

Conclusion

Protein microarrays were generated using 642 expres-
sion clones found sero-reactive with breast cancer, be-
nign breast tumours and healthy controls in a TAA
macroarray screen. Antigenic peptides were deduced
from clone sequences and corresponding peptide mi-
croarrays were produced. Both protein and peptide
arrays were then processed with serum samples from
individuals with breast cancer, benign breast tumours
and healthy controls. Classification success of the 3
sample groups was moderate using protein microar-
rays. The peptide arrays enabled classification of the
serum samples with reasonable sensitivities and speci-
ficities. Through the use of peptide arrays, the difficul-
ties associated with the protein arrays can be circum-
vented and thus provide a robust platform for early
diagnosis of cancer. However, in order to establish
peptide arrays as a potential breast cancer diagnostic
tool, test sensitivities and specificities should be in-
creased through additional antigenic peptides which
then have to be thoroughly validated on larger sets of
serum samples. This study shows that in silico de-
signed peptides improve the classification success and
peptide microarrays can thus be a good alternative to
protein arrays for auto-antibody based biomarker de-
velopment.
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