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Abstract

The Cbl-associated protein/ponsin (CAP) is an adaptor
protein that contains a so-called Sorbin homology
(SoHo) domain and three Src homology 3 (SH3) do-
mains which are engaged in diverse protein-protein
interactions. CAP has been shown to function in the
regulation of the actin cytoskeleton and cell adhesion
and to be involved in the differentiation of muscle cells
and adipocytes. In addition, it participates in signaling

pathways through several receptor tyrosine kinases
such as insulin and neurotrophin receptors. In the last
couple of years, several studies have shed light on the
details of these processes and identified novel interac-
tion partners of CAP. In this review, we summarize
these recent findings and provide an overview on the
function of CAP especially in cell adhesion and mem-
brane receptor signaling.

The SoHo protein family

The Cbl-associated protein (CAP) was first identified
as a Src homology 3 (SH3) domain containing protein
and thus originally named SH3P12 (Sparks et al.
1996). CAP, also known as ponsin, belongs to the
sorbin homology (SoHo) adaptor protein family and is
encoded by the SORBS1 gene. This protein family
includes two other members: Arg-binding protein 2
(ArgBP2), encoded by the SORBS?2 gene, and vinexin,
encoded by the SORBS3 gene, and their corresponding
splicing isoforms. On the structural level, these pro-
teins are characterized by an N-terminal SoHo domain
and three C-terminal SH3 domains (Reviewed in Ki-
oka et al. 2002, Roignot & Soubeyran 2009). The
SoHo domain was named after its homology to the
soluble peptide sorbin (Pansu er al. 1981, Vagne-
Descroix et al. 1991), and at least human sorbin seems
to be generated by splicing of an alternative transcript
of the SORBS?2 gene locus (Hand & Eiden 2005). The
members of the SoHo protein family are expressed in
most tissues and cell types with a quite congruent dis-
tribution pattern. Especially in the heart, certain iso-
forms of vinexin, CAP and ArgBP2 are highly ex-
pressed (Kioka ef al. 1999, Mandai et al. 1999, Ribon
et al. 1998c, Wang et al. 1997). In addition to the
structural and expressional similarities between the
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SoHo protein family members, they share many func-
tional properties, such as the participation in the regu-
lation of cell-cell and cell-matrix adhesion, actin cy-
toskeleton organization and growth factor receptor
downstream signaling (Cestra et al. 2005, Kioka et al.
2002, Roignot & Soubeyran 2009).

The ArgBP2 protein was identified as an inter-
action partner of the Abl-related gene, Arg (Wang et
al. 1997), which is a ubiquitously expressed non-
receptor tyrosine kinase of the Abl family (Kruh et al.
1986, 1990). Various studies have shown that ArgBP2
is a scaffolder protein involved in multiple regulatory
pathways converging primarily on the regulation of the
cytoskeleton. It can be assumed that the N-terminal
part containing the SoHo domain is important for
ArgBP2 membrane targeting, since it was shown to
interact with a2-spectrin (Cestra et al. 2005), a major
component of the membrane associated cytoskeleton,
and flotillin-1 (flot-1) (Haglund et al. 2004), a protein
associated with specialized membrane microdomains
known as lipid rafts (For a review, see Babuke & Tik-
kanen 2007, Banning et al. 2011) ). The SH3 domains
of ArgBP2 mediate binding to various proteins that are
directly or indirectly involved in the regulation of actin
cytoskeletal dynamics, e.g. the GTPases dynamin-1
and -2, components of the WAVE regulating complex
(Cestra et al. 2005), the actin-binding protein vinculin
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(Kawabe et al. 1999), the non-receptor tyrosine kinase
c-Abl (Wang et al. 1997), the E3 ubiquitin ligase Cbl
(Soubeyran ef al. 2003) and the tyrosine kinase Pyk2
(Haglund et al. 2004). Knockdown of ArgBP2 and the
neuronal nArgBP2 in primary mouse astrocytes re-
sulted in an overall change of the cell morphology with
a prominent presence of actin ruffles and a transloca-
tion of some focal adhesion (FA) proteins such as pax-
illin from adhesion sites to the cytoplasm (Cestra et al.
2005).

Vinexin was first isolated as a vinculin binding
protein (Kioka et al. 1999). Three isoforms of vinexin
have been described: vinexin a, vinexin 3, which lacks
the SoHo domain and is thus not a member of the
SoHo family (Kioka et al. 1999), and vinexin y
(Matsuyama et al. 2005). These proteins have been
connected to various signaling pathways, e.g. modula-
tion of the epidermal growth factor/ mitogen activated
protein kinase (EGFR/MAPK) signaling cascade
(Matsuyama et al. 2005, Mitsushima et al. 20006,
Mitsushima et al. 2007, Suwa et al. 2002) and actin
cytoskeleton remodeling processes, such as actin stress
fiber formation, cell spreading and migration (Kioka et
al. 2010, Kioka et al. 1999, Mitsushima et al. 2006,
Mizutani et al. 2007). In addition, localization at FAs
and adherens junctions due to their interaction with
vinculin was demonstrated for vinexin a and vinexin 3
(Kioka et al. 1999, Mizutani et al. 2007, Takahashi et
al. 2005).

Splicing isoforms of CAP

The gene encoding for CAP maps to human chromo-
some 10q23.3-q24.1. Alternative splicing of this gene
results in many different tissue and developmental
stage specific isoforms (Figure 1A). With 34 inde-
pendent exons, 14 of which have been reported so far
to be alternatively spliced (Lin et al. 2001), human
SORBS1 might be considered as one of the genes with
the highest number of splicing variants. Although al-
ternative splicing usually results in a removal or an
insertion of protein domains (Cooper 2005), the major
domains of CAP, namely SoHo and the three SH3 do-
mains, are present in all identified murine and human
CAP isoforms (Lin et al. 2001, Zhang et al. 2003).
However, transcript variation is achieved by the pres-
ence of insertion regions encoding for a coiled-coil
domain and Pro-rich regions (Gehmlich et al. 2010,
Matson et al. 2005, Zhang et al. 2003) that also typi-
cally mediate protein-protein interactions (Lupas 1996,
Macias et al. 2002). Consequently, this is likely to re-
sult in a change of CAP interaction networks in differ-
ent tissues.

The group of A. Saltiel described four alterna-

tively spliced CAP isoforms (Figure 1B) expressed in
mouse white adipose tissue (WAT) and ascribed them
names CAP1-4 (Zhang et al. 2003). CAP2, -3 and -4
were predicted to contain a coiled-coil domain before
the N-terminal SH3 domain. Furthermore, CAP4 has
been proposed to possess a 70 amino acid-long Pro-
rich region N-terminal to the SoHo domain, a smaller
part of which is also present in CAP3. All four iso-
forms have been shown to localize at the plasma mem-
brane and in the cytoplasm of differentiated 3T3-L1
adipocytes. Out of these four isoforms, CAP2 shows a
nuclear localization (Zhang et al. 2003). A human
CAP2 homologue, called R85, was shown to localize
in the nucleus and to exhibit a nuclear localization se-
quence as well (Lebre ef al. 2001, Nunes et al. 2005).
Some CAP isoforms were detected in the majority of
murine adult tissues examined, the level being the
highest in the heart and WAT. The expression of CAP
isoforms was induced during adipogenesis where it
was shown to be regulated by the transcription factor
peroxisome proliferator-activated receptor y (PPARY).
Moreover, ectopic expression of PPARy in fibroblasts
increased the expression of CAP (Ribon et al. 1998b).

The expression of CAP is increased during
myogenic differentiation. Very recently, a novel hu-
man CAP isoform (human transcript variant 5) was
described which is specifically expressed in striated
skeletal muscles and localized at certain cell-matrix
contacts, the costameres (Gehmlich et al. 2010). Hu-
man transcript variant 5 was reported to contain a 278
amino acid long insertion between the second and the
third SH3 domains of CAP, as a result of the use of
two alternatively spliced exons number 30 and 31. The
human transcript variant 5 was originally reported to
be absent from fetal and adult human hearts. However,
Matson et al. described a human isoform containing
spliced exons 30, 31 and 32, which was expressed not
only in the skeletal muscle but also in the heart
(Matson et al. 2005). Indeed, a murine exon corre-
sponding to the human exon 31 was found to be one of
the alternatively spliced exons during mouse heart de-
velopment (Kalsotra et al. 2008), pointing to a possible
role that CAP might play also during cardiomyocyte
differentiation (see below).

CAP in adhesion and cytoskeletal regulation

The development and maintenance of cell-cell and
cell-matrix adhesions are tightly regulated processes
that are crucial in a variety of physiological and patho-
physiological functions within multicellular organisms.
A prominent cell-cell adhesion type is the adherens
junction, which is a multi-protein macromolecular as-
sembly characterized by the presence of members of
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the cadherin and catenin family. FAs in turn provide
an important connection to the extracellular matrix
(ECM) via proteins of the integrin family. Both struc-
tures are highly dynamic, and in addition to their an-
choring function to the actin cytoskeleton, they play
important roles in signal transduction (Reviewed in
Harris & Tepass 2011, Hartsock & Nelson 2008, Mar-
tin et al. 2002). CAP has been shown to interact with
numerous proteins that are involved in cell adhesion.
An overview of these interactions is provided in Figure
2A.

Ribon et al. demonstrated for the first time that
CAP may play a role in signaling events associated
with integrin mediated adhesion by showing that NIH-
3T3 cells overexpressing CAP and the insulin receptor
(IR) exhibit a strong increase in the number and den-

sity of F-actin based stress fibers and an increased
number of FAs (Ribon et al. 1998a). In Potorous tri-
dactylis (kangaroo rat) kidney (PtK2) cells, overex-
pression of CAP led to significantly larger FAs and
formation of prominent stress fibers (Gehmlich et al.
2007). However, the increased stress fiber formation
seems to be highly dependent on the expression level
of CAP (our unpublished results). The observed phe-
notypes resemble the effect of the small GTPase Rho
on actin organization and FAs (Machesky & Hall
1997), suggesting a role of CAP in the Rho dependent
pathway. Indeed, in mouse lens epithelial cells, the
expression and distribution of CAP appears to be regu-
lated by the Rho kinase mediated actin cytoskeletal
organization. This and its localization at fiber cell
basal ends and cell-cell junctions suggest a role for

A 13 15 20 32
3 5 7 1214 1921 25 30 31
human SORBS1
SoHo SH3A and SH3B SH3C
18
4 7 9 1213 17 19 23
murine SORBS1
SoHo SH3A and SH3B SH3C

B SH3 SH3 SH3

CAP1

CAP2

CAP3

CAP4

Figure 1. Transcript variants of Cbl-associated protein (CAP). (A) Exon structure of the human and murine SORBS1 gene. Al-
ternatively spliced exons are highlighted in grey and the domains encoded by specific exons are pointed out below. The human
SORBS1 gene is composed of 34 independent exons, 14 of which are alternatively spliced. The murine SORBS! gene is pre-
dicted to be composed of 30 exons, 9 of which have been reported to be alternatively spliced. (B) Published murine CAP iso-
forms discovered in adipocytes. All four isoforms possess an N-terminal SoHo domain and three C-terminal SH3 domains. Dif-
ferences are observed in a poly-proline region (PP) N-terminally to the SoHo domain and in the presence of a coiled-coil do-
main (CC) N-terminally to the SH3A domain. SoHo = Sorbin homology domain; SH3 = Src homology 3 domain.
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CAP in lens cytoskeletal organization, fiber cell migra-
tion and adhesion (Rao & Maddala 2009).

The presence of CAP in stress fibers and FAs
has so far been shown in various cell types (Fernow et
al. 2009, Mandai et al. 1999, Ribon et al. 1998a,
Zhang et al. 2006). We have shown that several Tyr
residues in CAP can be phosphorylated by c-Abl and
Src kinases (Fernow et al. 2009). However, the local-
ization of CAP to stress fibers and FAs is independent
of its Tyr phosphorylation. On the other hand, a muta-
tion of one of the major Src phosphorylation sites of
CAP, Tyr326, to a phenylalanine, exhibits an inhibi-
tory effect on spreading (Fernow et al. 2009). This
suggests that the phosphorylation of CAP at Tyr326

may have an impact on FA turnover, which in turn is a
prerequisite for proper cell spreading and migration.
However, our data show that overexpression of a wild-
type CAP-EGFP fusion protein in HeLa cells, which
do not express endogenous CAP, has no effect on cell
spreading on fibronectin and collagen (Fernow et al.
2009). In contrast, the group of A. Saltiel showed that
the overexpression of CAP in NIH-3T3 fibroblasts
inhibits cell spreading on fibronectin, most likely due
to its negative impact on adhesion induced activation
of the mitogen activated protein kinase ERK through
the PAK/MEK/ERK pathway (Zhang et al. 2006).
These contradictory results may be due to the analysis
using a substantially different cellular background.

A Interaction partners of CAP in cell adhesion and cytoskeletal regulation

SoHo

SH3

SH3 SH3

Filamin C

Dynamin-1
Dynamin-2
Vinculin Paxillin FAK

Vinculin l-afadin
l-afadin SHIP2

B Interaction partners of CAP in receptor tyrosine kinase signaling

SoHo

FRS2
Flotillin-1

SH3

SH3 SH3

FRS2
c-Cbl
c-Abl
SOS
SHIP2
FAK

PQQP
Nck1
Nck2

Figure 2. Schematic representation of CAP domains and their interaction partners in cell adhesion, cytoskeletal regulation and
receptor tyrosine kinase signaling. CAP is a member of the sorbin homology (SoHo) adaptor protein family, which is character-
ized by the N-terminal SoHo domain and three C-terminal Src homology 3 (SH3) domains. (A) Interaction partners of CAP in
cell adhesion and cytoskeletal regulation. (B) Interaction partners of CAP in receptor tyrosine kinase (RTK) signaling. Color

coding shows the respective interaction domain in CAP.
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Together, these observations suggest that the func-
tional role of CAP may vary between different cell
types.

A direct connection of CAP to FAs is provided
by the focal adhesion kinase (FAK), which is a major
regulator of FA dynamics. FAK controls cell adhesion
and motility and functions as a cytosolic kinase and as
a scaffold protein with multiple tyrosine phosphoryla-
tion sites (Reviewed in Chacon & Fazzari 2011, Mitra
et al. 2005). Indirect GST pulldown experiments
showed that the third SH3 domain of CAP most effi-
ciently bound to FAK (Ribon et al. 1998a). Tyr phos-
phorylation of proteins involved in cytoskeletal rear-
rangements and their interactions are critical factors in
integrin-mediated signal transduction. Ribon et al.
were able to show that FAK is less phosphorylated in
cells overexpressing CAP (Ribon et al. 1998a). In ad-
dition to FAK, CAP interacts with the actin-binding
and FA associated protein vinculin via the region con-
taining the first and second SH3 domains (Mandai et
al. 1999). Other SoHo proteins, e.g. vinexin, have also
been shown to interact with vinculin (Kioka et al.
1999). In vinculin knockout mouse fibroblasts, CAP-
GFP exhibits a diffuse and fibrillar distribution, sug-
gesting that vinculin is important for the recruitment of
CAP to FAs (Zhang et al. 2006). Intriguingly, vinculin
is also a component of adherens junctions where it di-
rectly interacts with B-catenin (Peng et al. 2010) and a-
catenin (Watabe-Uchida er al. 1998, Weiss et al.
1998). Due to its dual localization in FAs and adherens
junctions, vinculin is emerging as an important regula-
tor of these cell adhesion types (Chen et al. 2005, Peng
et al. 2012) and provides a functional link from CAP
to both cell adhesion structures.

Interestingly, CAP was identified to be an in-
teraction partner of l-afadin, a protein that is also local-
ized at adherens junctions and is capable of directly
binding cell adhesion molecules of the nectin immu-
noglobulin superfamily (Takai et al. 2008), the actin
cytoskeleton (Mandai et al. 1999) and a-catenin
(Pokutta et al. 2002). CAP binds to the third proline
rich region of l-afadin with its second and third SH3
domains (Mandai et al. 1999). In accordance with a
direct interaction, Mandai ef al. have also shown that
CAP colocalizes with l-afadin and vinculin in adherens
junctions. The slightly overlapping interaction domain
of l-afadin and vinculin within CAP and the similar
localization led to the assumption that l-afadin and vin-
culin may bind to CAP in a competitive manner
(Mandai et al. 1999).

Studies by Zhang et al. have shown that CAP
colocalizes with paxillin at cell matrix adhesion sites
(Zhang et al. 2006), and it has been identified as a
muscle specific interactor of paxillin (Gehmlich ez al.

2007). Like CAP, paxillin is a FA associated molecule
which functions as an adaptor protein recruiting vari-
ous cytoskeletal and signaling proteins to coordinate
downstream signaling by integrin adhesion receptors
(For a review, see Schaller 2001). In addition, paxillin
was shown to be of importance for costamer formation
during muscle differentiation (Quach & Rando 2006).
The interaction of CAP with paxillin is mediated by
the second SH3 domain of CAP (Gehmlich et al. 2007,
Zhang et al. 2006). Zhang et al. showed that transient
knockdown of paxillin in REF52 cells had no effect on
the localization of CAP, suggesting that paxillin is not
important for the recruitment of CAP to FAs. How-
ever, overexpression of CAP, which results in coales-
cence of F-actin in short aggregates, enhanced the as-
sociation of paxillin and vinculin with actin cytoskele-
tal structures (Zhang et al. 2006). Based on the struc-
tural change in cell-matrix adhesions in CAP overex-
pressing cells, it can again be assumed that CAP is
involved in the modulation of FA turnover.

Numerous interaction partners of CAP have
been described, most of which bind to the SH3 do-
mains of CAP (Figure 2). To identify new interaction
partners that bind to regions other than the SH3 do-
mains of CAP, Zhang et al. used an SH3 domain dele-
tion construct of CAP for immunoprecipitation with
subsequent mass spectrometry analysis and identified
the protein filamin C (FLNc) as a novel interaction
partner of CAP (Zhang et al. 2007). FLNc is an actin
binding protein found in the dystrophin-glycoprotein
complex (Thompson et al. 2000), which is a special-
ized multi-component complex of the cardiac and
skeletal muscle membrane. This complex provides a
strong mechanical and signaling link between the cy-
toskeleton and the extracellular matrix (Lapidos et al.
2004). Overexpression of CAP in L6 myoblasts in-
duced a strong accumulation of endogenous FLNc in
actin-rich regions, indicating that CAP acts as an adap-
tor protein to recruit FLNc to cell-matrix adhesion
sites. In addition, in COS-7 cells, ectopic expression of
both proteins results in the formation of large actin
bundles (Zhang et al. 2007), suggesting that CAP en-
hances the actin crosslinking function of FLNc.

Further interaction partners of CAP that influ-
ence the actin cytoskeleton are the phosphatidylinosi-
tol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) 5-phosphatase
SHIP2 (Vandenbroere et al. 2003) and the GTPases
dynamin-1 and dynamin-2 (Tosoni & Cestra 2009).
SHIP2 contains several motifs capable of mediating
protein—protein interactions, including an N-terminal
SH2 domain which presumably binds phosphor-Tyr
containing motifs, and a pro-rich region. SHIP2 posi-
tively regulates cell adhesion and spreading (Prasad et
al. 2001) and influences the cortical actin cytoskeleton
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by modulating the phosphatidylinositol 3-kinase sig-
naling cascade (Dyson et al. 2005). Vandenbroere et
al. identified CAP as a novel interaction partner of
SHIP2 in a yeast two-hybrid screen and verified this
interaction by immunoprecipitation (Vandenbroere et
al. 2003). Dynamin-1 and dynamin-2 are key players
in the regulation of actin dynamics and endocytosis
(Chua et al. 2009, Gu et al. 2010, Krueger et al. 2003).
Their interaction with CAP is mediated by one of the
SH3 domains of CAP (Figure 2A) and provides an
additional link to the actin cytoskeleton (Tosoni &
Cestra 2009). Interestingly, overexpression of CAP
was shown to result in inhibition of dynamin mediated
endocytosis and increased stability of the EGFR
(Tosoni & Cestra 2009), suggesting that CAP may also
play a role in dynamin dependent endocytosis.

CAP in muscle differentiation

Within the last years, special attention has been paid to
functional aspects of CAP during muscle differentia-
tion. During this tightly regulated process, motile and
proliferating precursor cells fuse into multinucleated
myotubes that mature into contractile muscle fibers.
This myogenic program involves complex networks of
coordinated changes in gene expression and protein
composition accompanied by excessive remodeling of
FA-like cell matrix contacts into so called costameres
(Ervasti 2003, Le Grand & Rudnicki 2007, Taylor
2002). Mandai ef al. have shown that CAP is located at
costameres in cardiac muscle cells (Mandai et al.
1999). In myotubes, costaining of endogenous CAP
and vinculin showed that both proteins are concen-
trated at the costamere region of the sarcolemma mem-
brane (Zhang et al. 2007). Expression of CAP is not
detectable at the protein level in human skeletal muscle
(HSkM) myoblasts (Gehmlich et al. 2007) and in rat
skeletal muscle L6 myoblasts (Zhang et al. 2007). Fur-
thermore, CAP is present only at a very low level in
undifferentiated mouse skeletal muscle C2CI12
myoblasts (Gehmlich et al. 2007). However, with the
onset of myogenic differentiation, CAP becomes de-
tectable on protein level (Gehmlich et al. 2007, Zhang
et al. 2007). Immunofluorescent analysis of CAP lo-
calization during muscle differentiation showed that at
the beginning of the myogenic program, CAP is colo-
calized with paxillin at FAs. In more terminally differ-
entiated human skeletal muscle cells, both proteins
colocalize in pre-costameres. In addition, overexpres-
sion of CAP in C2C12 cells results in an increased for-
mation of pre-costameric structures (Gehmlich et al
2007). These data suggest that CAP is capable of
modulating the dynamics of FAs and actin cytoskele-
ton, which are prerequisites for cytoskeletal remodel-

ing during costamere formation.

Nck2/Grb4 is an adaptor protein that partici-
pates in ephrin B reverse signaling in neuronal cells,
which has been shown to be important for axon path-
finding (Birgbauer et al. 2000, Henkemeyer et al.
1996). The SH2 domain of Nck2 binds to the phospho-
tyrosines in the activated ephrin B, and the SH3 do-
mains of Nck2 then recruit CAP by binding to the
PQQP motif that is present between the SH3 domains
B and C of CAP (Cowan & Henkemeyer 2001). The
complex formed between the human CAP transcript
variant number 5 and Nck2 was also suggested to play
a role in cytoskeletal remodeling during differentiation
of skeletal muscle cells. In this isoform of CAP, the
insertion of 278 amino acids takes place in the middle
of the PQQP motif that binds Nck2 (Gehmlich et al.
2010). However, although this binding motif is dis-
rupted in the transcript variant 5, its ability to bind to
Nck2 is retained due to the presence of another proline
rich motif contained within the insertion in a segment
encoded by exon 30 (Gehmlich et al. 2010). These
data point to the importance of CAP/Nck?2 interaction
for muscle differentiation, but the exact role of this
interaction in this process remains to be clarified.

CAP in TrkA receptor signaling

The Trk receptor tyrosine kinase family consists of
three known members, TrkA, TrkB and TrkC, which
play important roles in various cellular processes, e.g.
proliferation and differentiation, especially in the nerv-
ous system. The three receptors show varying affinities
to neurotrophins, and Trk A is specifically activated by
the nerve growth factor (NGF) (Reviewed in Huang &
Reichardt 2003, Kaplan & Miller 2000). In rat pheo-
chromocytoma (PC12) cells, CAP associates with
TrkA upon stimulation with NGF (Limpert et al.
2007)). This complex formation results in the translo-
cation of TrkA to lipid rafts, which are specialized
membrane microdomains enriched in sphingolipids
and cholesterol (Lingwood & Simons 2010, Simons &
Sampaio 2011). The translocation was shown to be
dependent on the interaction of CAP with the lipid raft
associated protein flot-1. Deletion of the CAP SoHo
domain prevents its interaction with flot-1, abolishes
TrkA lipid raft association and inhibits further down-
stream signaling events such as ERK phosphorylation
(Limpert et al. 2007). For an overview of the CAP in-
teraction partners during signaling, see Figure 2B.
Recently, we have shown that CAP is not only
capable of binding flot-1 via its SoHo domain but also
interacts with the fibroblast growth factor receptor sub-
strate 2 (FRS2, Figure 2B). In CAP, the binding to
FRS2 is cooperatively mediated by the SoHo domain
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and the third SH3 domain (Tomasovic et al. 2012).
Interestingly, FRS2 has also been shown to directly
interact through its phosphotyrosine binding (PTB)
domain with TrkA in a phosphotyrosine dependent
manner after NGF stimulation (Meakin et al. 1999,
Ong et al. 2000). Furthermore, we demonstrated that
flot-1 directly interacts in vitro and in vivo with FRS2
by binding to its PTB domain. Since both flot-1 and
CAP bind to the PTB domain of FRS2, it is likely that
CAP and flot-1 compete for the binding to FRS2 to
regulate the formation of signaling complexes accord-
ing to the participating receptor (Tomasovic et al.
2012).

CAP in insulin signaling

The reported high expression level of CAP in insulin
sensitive tissues, such as adipose tissue and skeletal

muscle (Zhang et al. 2003), implies that CAP might
exert a specific function in these tissues. Indeed, CAP
was found to be one of the major players of the insulin
signaling cascade (Baumann et a/. 2000, Kimura et al.
2001). Insulin is a very potent anabolic hormone with
a plethora of metabolic activities. For example, it
stimulates the transport of glucose into adipocytes and
muscle cells. By binding to its tyrosine kinase recep-
tor, the IR, insulin initiates a pathway that is composed
of two arms that act synergistically (Figure 3). These
»signaling arms* are distinguished by their depend-
ency on the activation of phosphatidylinositol 3-kinase
(PI3K), with one being PI3K dependent and the other
arm PI3K independent, involving the proteins c-Cbl,
CAP and TC10. The activated IR phosphorylates sev-
eral intracellular substrates, including the insulin re-
ceptor substrate (IRS) docking proteins. The phos-
phorylated Tyr residues of IRS serve as binding sites
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Figure 3. Functional role of CAP in insulin signaling. The insulin signaling pathway can be subdivided into two major branches
- the phosphatidyl-inositol 3-kinase (PI3K) dependent and the PI3K independent pathway - both of which induce the recruit-
ment of glucose transporter type 4 (GLUT4) storage vesicles to lipid rafts. CAP was found to be one of the key players in the
latter pathway. By binding to flot-1, CAP recruits c-Cbl into lipid rafts upon insulin stimulation. Through this interaction, the c-
Cbl/CAP complex is placed in the proper environment for the downstream signaling. FRS2 may provide a further link between
CAP and the insulin receptor (IR). FRS2 was found to be enriched in lipid rafts, where it interacts with flot-1 and may assist in
scaffolding the components of the c-Cbl/CAP/TC10 dependent pathway.
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for SH2 containing signaling molecules such as PI3K.
Activation of PI3K results in the production of phos-
phatidyl-inositol (3,4,5)-trisphosphate (PIP3) that acts
as an allosteric regulator of the phosphoinositide de-
pendent kinase (PKD). Active PKD phosphorylates
and thereby activates protein kinase B/Akt. Recruit-
ment of the glucose transporter GLUT4 vesicles from
internal stores to the plasma membrane takes place,
resulting in uptake of glucose into the cell (Cheatham
et al. 1994, Okada et al. 1994, Sharma et al. 1998).
However, since other growth factors and adhesion
molecules that are able to activate PI3K have no effect
on glucose transport, a parallel, fine-tuning pathway
specific for IR was speculated. Indeed, the PI3K inde-
pendent arm of insulin signaling pathway was found to
be important for the regulated glucose transport to take
place. Intriguingly, CAP has been recognized as one of
its main mediators. CAP forms a constitutive complex
with the ubiquitin ligase c-Cbl (Ribon et al. 1998a)
and binds to IR upon its activation. The binding to IR
was shown to be indirect and mediated by the interac-
tion with the adaptor protein with pleckstrin homology
and Src homology 2 domains (APS) (Ahn et al. 2004).
During this process, c-Cbl is phosphorylated by the IR
(Ribon & Saltiel 1997), the CAP/Cbl complex is re-
leased from the IR and recruited to lipid rafts (Mastick
et al. 1998). This recruitment is mediated by the inter-
action between CAP and flot-1, similarly to the TrkA
signaling (Baumann et al. 2000).

The SoHo domain of CAP has been shown to
bind the first hydrophobic domain of flot-1 (Liu ef al.
2005), and through this interaction, a ternary complex
flot-1/CAP/c-Cbl is formed, placing c-Cbl into the
proper environment to propagate the downstream sig-
naling (Baumann et al. 2000). CAP mutants that are
not able to bind ¢-Cbl (SH3 deletion mutants) or flot-1
(SoHo deletion mutants) act in an inhibitory manner
on the insulin stimulated GLUT4 translocation and
glucose uptake (Chiang et al. 2001, Kimura et al.
2001). Being at “the right place at the right time”,
phosphorylated c-Cbl can recruit other proteins to lipid
rafts, such as the SH2 containing adaptor protein CrkII
and GDP-GTP exchange factor C3G (Chiang et al.
2001). C3G can then activate the Rho family GTPase
TC10, which is targeted to lipid rafts by means of far-
nesylation and palmitoylation (Watson et al. 2001).
TC10 then stimulates the movement of GLUT4 to-
wards the plasma membrane. As with TrkA signaling,
our recent findings suggest that FRS2, which is able to
bind IR, together with CAP and flotillin-1 might be
another link between the CAP/Cbl complex and the IR
(Tomasovic et al. 2012). Interestingly, FRS2 has been
shown to become Tyr phosphorylated upon insulin
stimulation (Delahaye et al. 2000). However, the de-

tails of the FRS2 function in insulin signaling need to
be clarified in further studies.

Although CAP was ascribed a positive role
during insulin signaling, the CAP knockout mouse
model exhibiting a genetic deletion of SORBSI shows
an unexpected insulin sensitivity. These mice are pro-
tected against a high-fat diet induced insulin resistance
and show a reduced number of lymphocytes and
monocytes in the blood and fewer macrophages in the
adipose tissue (Lesniewski et al. 2007). The observed
insulin sensitive phenotype could have at least two
explanations. The other members of the SoHo protein
family, vinexin o and ArgBP2, might substitute for
CAP and overtake its functions. On the other hand, the
PI3K dependent arm of the insulin signaling cascade
displays an enhanced activity in adipocytes genetically
ablated of SORBS!. Indeed, Lesniewski et al. found an
increased phosphorylation of Akt after insulin stimula-
tion in white adipose tissue and skeletal muscle of the
CAP knockout mice after high-fat diet (Lesniewski et
al. 2007). A similar insulin sensitive phenotype was
found in both APS and Cbl knockout mice (Minami et
al. 2003, Molero et al. 2004), being in agreement with
the proposed enhancement of PI3K dependent signal-
ing in the absence of the PI3K independent one.

Conclusions

Several studies have recently revisited the function of
CAP as an adaptor protein that mediates signaling
processes and the organization of the actin cytoskele-
ton. Novel interaction partners have been identified
that also play a role in these processes, and studies on
knockout mice have revealed surprising aspects on the
role of CAP in insulin signaling. In future studies, it
will be important to clarify the exact role of the bind-
ing partners of CAP in the regulation of its function.
Since many of these interaction partners bind to the
same domains in CAP, as for example FRS2 and flot-
1, both of which interact with the SoHo domain, it is
likely that competitive binding and formation of di-
verse complexes with CAP regulate its function. An-
other important aspect of CAP that needs to be ad-
dressed in more detail is the characterization of the
function and expression patterns of the numerous CAP
isoforms. Although the SoHo proteins share many in-
teraction partners and a functional redundancy has
been suggested, CAP exhibits the highest number of
alternatively spliced transcripts within this family.
These isoforms may also display different interaction
partners, depending on which domains are present as a
result of alternative splicing. Thus, it is possible that
the individual isoforms of CAP may even show contra-
dictory effects on the same signaling pathway in two
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different tissues due to formation of different signaling
complexes. This might also explain the unexpected
effect on insulin signaling observed in the CAP knock-
out mice (Lesniewski et al. 2007).
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