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Abstract

Advances in “omics”-based fields have produced an
explosion of new information, fueling high expecta-
tions for improved public and individualized health.
Unfortunately, there exists a widening gap between
basic biochemistry and “omics”-based population re-
search, with both disciplines failing to translate their

full potential impact to human health applications. A
paucity of comprehensive study systems is one of the
many roadblocks faced by translational research today.
This commentary will highlight the current status of
such research, particularly emphasizing the role of
nutrigenomics.

The "omics" age has the potential to revolutionize the
diagnosis and management of various diseases by of-
fering a comprehensive view of the molecular under-
pinnings of pathology. However, a decade after publi-
cation of the complete sequence of the human ge-
nome, the promise of genomics for improved treat-
ment and better disease prevention is far from being
fulfilled. For example, among the 3,000 single-gene
disorders for which the responsible gene has been
identified, only a handful (<1%) have had this knowl-
edge translated directly into a new therapy. The full
picture, which also includes multi-gene disorders, is
even more disappointing as single-gene disorders are
estimated to account for only 9% of childhood mortal-
ity and less than 2% of overall hospital admissions in
the United States (Korf & Mikhail 2007). The vast pre-
ponderance of health care costs are devoted to the
treatment of common complex disorders, such as coro-
nary artery disease, stroke, diabetes, hypertension, and
cancer, which all appear to have large, heritable com-
ponents (Ginsburg 2011). The National Institutes of
Health (NIH) has made "translational" or "bench-to-
bedside" research a priority, forming specialized cen-
ters and launching the Clinical and Translational Sci-
ence Award (CTSA) program in 2006 (Woolf 2008).
More recently, President Obama signed a spending bill
that includes a provision to establish the National Cen-
ter for Advancing Translational Sciences (NCATS)
within the NIH. As a result, basic biomedical research
and genome-wide association studies (GWAS), the
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two ends of the translational paradigm, are booming.
But their impacts, in terms of new therapies and inter-
vention strategies, are growing at a far more modest
pace (Laurence 2012). Prevention, in particular, has
suffered in the United States because of the use of a
traditional "medical" model rather than a "health"
model. Financing, medical education, and research
support have favored disease treatment over preven-
tion. This is ironic since, historically, the greatest gains
in physical well-being have come from preventive
rather than curative activities (Frank 1996). However,
this relative failure to date should not be a cause for
resignation or despair, but rather a stimulus to redouble
our efforts.

Nutrigenomics has the potential to lead to evi-
dence-based dietary intervention strategies for restor-
ing health and fitness and preventing disease. It may
be viewed as an off-shoot of chemical biology, where
nutrients are seen as signals or chemicals that trigger a
sequence of reactions leading to changes in gene ex-
pression and other biological effects (together termed
the “phenotype”) within a specific cell in the body.
Recent advances in nutrigenomics are due to the com-
pletion of the human genome project and the new
biomics technologies that provide the means for simul-
taneous determination of the expression of many thou-
sands of genes at the mRNA (transcriptomics), me-
tabolite (metabolomics), and protein (proteomics) lev-
els. Genomic and transcriptomic studies are mostly
conducted by DNA/RNA microarray technologies, but
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proteomics and metabolomics do not yet have stan-
dardized large-scale procedures. Proteome analysis is
usually performed by two-dimensional gel electropho-
resis and liquid chromatography-mass spectrometry,
while metabolome analysis can be carried out by gas/
liquid chromatography-mass spectrometry and liquid
chromatography-nuclear magnetic resonance spectros-
copy. These technologies are usually applied in a
“differential display” mode, that is, by comparing phe-
notypes in diseased versus healthy subjects to help
achieve better association of clinical phenotypes with
the corresponding genotypes. Nutrigenomics data are
typically generated on a massive scale and require
computational analyses to derive mechanistic under-
standing of the disease under study (Go et al. 2003).

Although “omics” technologies are booming,
the lack of a robust model system to test nutrigenomics
principles prior to their application in public health is a
serious impediment to progress. Relying on risk factor
assessment, the evidence-based path - from basic dis-
covery to effective prevention strategy - seems long,
arduous, and confounding. For example, the identifica-
tion of sequence polymorphisms regulating gene ex-
pression is important for understanding human varia-
tion in response to dietary intake (Go et al. 2003, Gins-
burg 2011). In vitro experimental designs for nutrient—
gene interactions using human cell lines offer a con-
trolled study environment. Individual dietary compo-
nents can be tested in vitro for a limited number of
phenotypes in a dose- and time-dependent manner.
However, to evaluate the role of a single nucleotide
polymorphism (SNP), the SNP has to be artificially
engineered into the cells, making the same experiment
a three-way study. In principle, modeling patient geno-
types by introduction of gain-of-function or loss-of-
function disease mutations (both common in many
forms of cancer) into any endogenous gene locus of
human cells is possible. However, data obtained from
such a study will be difficult to interpret in the context
of human populations, where a SNP acts in synergy
with other genetic and environmental factors. Fortu-
nately, the option of using an in vivo model, such as
rodents or higher-order mammals, also exists. The
greatest advantage of a mammalian in vivo model is
the ability to control induction of the disease pheno-
type (clinical signs), allowing measurements of the
preventative or curative effects of any nutrient. More-
over, the diet, environment, and other potentially influ-
ential factors can be controlled, monitored, and meas-
ured. However, knowledge about conserved gene regu-
latory elements, such as SNPs, across species is lim-
ited at the present time, making data obtained from in
vivo models not always translatable to the human con-
dition.

The most relevant study system for dietary
interventions is the human organism, and there is a
growing trend toward system-wide approaches in pub-
lic health studies. However, these studies have so far
been limited to either large-scale association-
observation studies or small-to-medium-scale interven-
tion studies. In these studies, there is a preference for
applying an array of technologies to the same sample,
allowing physiological changes to be assessed more
robustly throughout all the molecular layers, including
mRNA, protein, and metabolite. However, a critical
assessment of study outcomes reveals uncertainty in
data interpretation, knowledge gaps, as well as the
need for improved study designs and more comprehen-
sive phenotyping of volunteers before selection for
study participation (Wittwer et al. 2011). For example,
to investigate preventative responses to a diet influ-
enced by a specific SNP or a combination of SNPs is
challenging at multiple levels. For effective diet-based
prevention studies, both large-scale and long-term in-
terventions are critical. Screening of a large number of
subjects for the presence of one or more SNPs, con-
trolling their dietary intake over a long period of time,
minimizing environmental and lifestyle variations of
study participants throughout the experimental dura-
tion, indefinite timelines for spontaneous disease phe-
notype occurrence, and compliance issues are just a
few examples of the potential roadblocks to generating
an optimal study design. Ultimately, because many
cases of chronic diseases are influenced by multiple
dietary factors, nutrition-genome interactions cannot
be identified unless diet and genotype are controlled
and crossed over in the experimental design (the same
diet with different genotypes or different genotypes
with the same diet). Because human intervention stud-
ies are costly and difficult to conduct, observational
epidemiologic studies (which mostly detect associa-
tions, not causal relationships) have continued to be
the gold standard and will likely continue to dominate
the field of nutrigenomics. However, such observa-
tional designs are not appropriate for preventive inter-
ventions that rely on an understanding of molecular
mechanisms (Wittwer et al. 2011).

A second example from the field of nutrige-
nomics in which a model study system is urgently
needed is the relationship between diet, epigenetic
events, and cancer prevention (Go et al. 2003, Ross et
al. 2008). Cancer is caused by spontaneous mutations
resulting in both abnormal genetic and epigenetic
events. Epigenetic events are important mechanisms
by which gene function is selectively activated or inac-
tivated. One such event, DNA methylation, which is a
hallmark of multiple human malignancies, involves
covalent addition of a methyl group to a cytosine resi-
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due within CpG dinucleotides. DNA methylation
changes gene expression, regulates chromosomal sta-
bility, and is modulated by dietary factors (Ross et al.
2008). Another example in which diet can regulate an
epigenetic event involves the Polycomb group (PcG)
proteins, which function as transcriptional repressors
through chromatin modification and contribute to the
pathogenesis of cancer (Kashyap et al. 2011). Histone
modifications triggered by polycomb repressive com-
plex signaling are important during embryonic stem
(ES) cell differentiation. The active vitamin A con-
stituent retinoic acid (RA) is involved in differentiation
of various cancer cells in culture and has been found to
modify polycomb complex signaling during differen-
tiation of ES cells (Kashyap et al. 2011). Hence, both
DNA methylation and chromatin modification events
are excellent examples of processes by which environ-
mental factors, including diet, may modify cancer risk
and tumor behavior (Ross et al. 2008).

To validate basic research findings in human,
such as whether dietary intake of RA can prevent or
delay cancer development in relevant high-risk groups,
once again, well-designed, long-term, and large-scale
studies will be needed. For example, combining the
features of a prospective cohort study, a randomized
controlled trial, “next-generation” measures of diet and
clinical parameters, as well as extensive biospecimen
collection and storage for measurement of genetic and
epigenetic measurements will be critical. The focus
should be on how individual dietary components influ-
ence epigenetic events and how this correlates with
phenotypic changes and genotype. Very little informa-
tion currently exists about gene-specific epigenetic
changes in human as influenced by biologically active
food components. Furthermore, very little information
exists to evaluate, in a comprehensive manner, the
specificity of individual nutrients, the impact of in-
takes and exposures, and any acclimation with time
and/or tissue specificity. With new technologies and
falling costs, it is possible to scan and sequence larger
data sets, with improved statistical power to detect a
wider spectrum of risk variants. Functional pathway
analyses, robust methods for power analyses, as well
as recruiting multidisciplinary teams of experts will be
critical. Sustainable funding strategies need to be iden-
tified, as the costs of such research will be exorbitant.
Although, in theory, all of these requirements can be
met, in reality, such massive studies are difficult to
plan, implement, and sustain, even when conducted on
a national scale. A good example of a study of this
magnitude is the National Children’s Study (NCS),
which is still only an association type of study without
any mandated intervention. The NCS was launched in
2000 when Congress directed the NIH to study “the

effects of both chronic and intermittent exposures on
child health and human development”. Law-makers
specified that the exposures could be biological,
chemical, physical, or psychosocial and that the study
should address health disparities and monitor US chil-
dren in all their diversity for 21 years. However, by
2012, after significant investments have already been
made, NIH has come to see the study as unsustainable
in its current design (Wadman 2012).

In our laboratory, we use molecular mecha-
nism-based designs in preclinical and human interven-
tions that represent the breadth of current translational
models for nutrient-gene interaction studies. Yet, we
are limited in our ability to address all the scientific
questions we want to ask. No perfect strategy exists at
present to address this technical roadblock to success-
ful utilization of nutrigenomics principles for improve-
ment of public health. Funding agencies such as the
NIH are encouraging investigators to seek improve-
ment in research techniques and model systems to bet-
ter accomplish the touted potential of nutrigenomics. A
robust research model, well-controlled, allowing inter-
play and experimental manipulation of multiple vari-
ants and yet physiologically relevant in terms of hu-
man health interpretations, is urgently needed.

We are currently optimizing a physiologically
more relevant experimental model in our laboratory
that may allow manipulation of multiple variants in a
controlled manner and fill in some of the existing gaps
in nutrigenomics research. This model relies on the
availability of biologically relevant human tissue
specimens from diseased and healthy individuals.
While use of tissue explants in vitro is not novel by
itself, large-scale experimental platforms utilizing hu-
man tissues and/or primary cells are uncommon in
nutrigenomics research. The donors are assigned ID
numbers, while personal identification information, if
present, is removed. Furthermore, appropriate institu-
tional review board permissions are obtained whenever
necessary. When a steady supply of relevant tissues is
identified along with appropriate accompanying
physiological and/or medical records, the genotype of
the sample is determined prior to derivation of primary
cells from these tissues. Controlled treatment of these
cells, representing many of the physiological com-
plexities of the donor, can be subsequently carried out
with individual or combinations of dietary factors in a
time- and concentration-dependent manner. The result-
ing molecular events, including cell signaling re-
sponses or epigenetic events, and their association with
SNPs can be studied in these live cells. Virtually any
biological question can be investigated without having
to deal with research subject compliance issues, inac-
curately controlled experimental parameters, and envi-
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ronmental- or lifestyle-based uncertainties. Age-
matched populations may be studied, and the potential
exists to follow the same subjects for several years.
Also, cellular elicitors are used to mimic disease onset
in a post-treatment manner to help measure the preven-
tive effects of diet. The knowledge generated from
such a study can be directly utilized to design a very
specific and small-scale human study. Moreover, since
diet-based modifications are generally considered a
safer alternative to pharmacological intervention, it is
possible that such post-validation in humans will not
be necessary at all.

However, even if the proposed experimental
model has potential to accelerate progress in nutrige-
nomics research, we anticipate challenges. Primary
cells live for only a short period of time and cannot be
passaged beyond a few cycles. Depending on tissue
sources, variations in their quality is possible. While
they represent larger populations and are ideally ob-
tained through tissue banks, health-care provider net-
works, and hospitals, batch-to-batch variations will
need to be factored into data analyses. Moreover, ready
access to human tissues may be limited. Above all,
primary cell culture methods are tedious, relatively
expensive, and require labor-intensive optimization
prior to actual experiments. Finally, characterizing di-
ets or specific nutrients as genome-damaging or ge-
nome-protecting using primary cells derived from dis-
cased or healthy tissues may still overlook the varia-
tion in benefits that accrue over a lifetime, and in par-
ticular, variation relative to the timing of disease onset.
Nevertheless, weighing potential benefits versus pit-
falls, policy makers should mandate greater human
tissue accessibility to researchers.

In conclusion, nutrigenomics holds tremen-
dous potential for providing better nutritional advice to
the general public, genetic subgroups, and individuals.
Because nutrigenomics requires a deep understanding
of nutrition, genetics, bioinformatics, and biochemistry
as well as an expanding array of “omics” technologies,
it is often difficult, even for professionals, to appreci-
ate the relevance of these disciplines to preventive ap-
proaches for optimizing health, delaying the onset of
disease, and diminishing disease severity. The findings
of molecular biochemistry research can positively im-
pact experimental medicine and dietetics research. For
example, identification of major as well as subtle ge-
netic differences is the first step in better understand-
ing human variation in response to diet and environ-
ment. Subsequently, an intervention discovery plat-
form may identify potential cellular targets. While con-
ventional in vitro and in vivo disease model-based re-
search may still be crucial, human specimen acquisi-
tion also becomes a critical step. Patient-relevant in

vitro disease models have been a missing link in the
discovery of novel interventions that are targeted or
personalized to the unique genetic mutations that de-
fine a patient’s disease type, progression, and, conse-
quently, their inherent or acquired drug sensitivity and
resistance profiles. However, since protocols for ob-
taining and processing human specimens are limited,
implementation of human tissue research services will
be necessary to ensure reproducible and reliable re-
sults. Furthermore, examination of a broad range of
human specimens of diverse origin with sufficient
numbers for the necessary statistical power is critical.
The information obtained from studies with human
specimens will greatly facilitate the design of clinical
trials, assisting in the identification of the smaller pa-
tient population that would most likely benefit from
the targeted experimental dietary intervention. This
could potentially scale down human intervention stud-
ies to save millions of research dollars and take us a
step closer to deriving the ultimate benefits of nutrige-
nomics research.
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