
Advances in “omics”-based fields have produced an 

explosion of new information, fueling high expecta-

tions for improved public and individualized health. 

Unfortunately, there exists a widening gap between 

basic biochemistry and “omics”-based population re-

search, with both disciplines failing to translate their 

full potential impact to human health applications. A 

paucity of comprehensive study systems is one of the 

many roadblocks faced by translational research today. 

This commentary will highlight the current status of 

such research, particularly emphasizing the role of 

nutrigenomics. 
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Molecular mechanism-based model to enhance outcomes of dietary 

intervention studies for disease prevention 

The "omics" age has the potential to revolutionize the 

diagnosis and management of various diseases by of-

fering a comprehensive view of the molecular under-

pinnings of pathology. However, a decade after publi-

cation of the complete sequence of the human ge-

nome, the promise of genomics for improved treat-

ment and better disease prevention is far from being 

fulfilled. For example, among the 3,000 single-gene 

disorders for which the responsible gene has been 

identified, only a handful (<1%) have had this knowl-

edge translated directly into a new therapy. The full 

picture, which also includes multi-gene disorders, is 

even more disappointing as single-gene disorders are 

estimated to account for only 9% of childhood mortal-

ity and less than 2% of overall hospital admissions in 

the United States (Korf & Mikhail 2007). The vast pre-

ponderance of health care costs are devoted to the 

treatment of common complex disorders, such as coro-

nary artery disease, stroke, diabetes, hypertension, and 

cancer, which all appear to have large, heritable com-

ponents (Ginsburg 2011). The National Institutes of 

Health (NIH) has made "translational" or "bench-to-

bedside" research a priority, forming specialized cen-

ters and launching the Clinical and Translational Sci-

ence Award (CTSA) program in 2006 (Woolf 2008). 

More recently, President Obama signed a spending bill 

that includes a provision to establish the National Cen-

ter for Advancing Translational Sciences (NCATS) 

within the NIH. As a result, basic biomedical research 

and genome-wide association studies (GWAS), the 

two ends of the translational paradigm, are booming. 

But their impacts, in terms of new therapies and inter-

vention strategies, are growing at a far more modest 

pace (Laurence 2012). Prevention, in particular, has 

suffered in the United States because of the use of a 

traditional "medical" model rather than a "health" 

model. Financing, medical education, and research 

support have favored disease treatment over preven-

tion. This is ironic since, historically, the greatest gains 

in physical well-being have come from preventive 

rather than curative activities (Frank 1996). However, 

this relative failure to date should not be a cause for 

resignation or despair, but rather a stimulus to redouble 

our efforts.  

 Nutrigenomics has the potential to lead to evi-

dence-based dietary intervention strategies for restor-

ing health and fitness and preventing disease. It may 

be viewed as an off-shoot of chemical biology, where 

nutrients are seen as signals or chemicals that trigger a 

sequence of reactions leading to changes in gene ex-

pression and other biological effects (together termed 

the “phenotype”) within a specific cell in the body. 

Recent advances in nutrigenomics are due to the com-

pletion of the human genome project and the new 

biomics technologies that provide the means for simul-

taneous determination of the expression of many thou-

sands of genes at the mRNA (transcriptomics), me-

tabolite (metabolomics), and protein (proteomics) lev-

els. Genomic and transcriptomic studies are mostly 

conducted by DNA/RNA microarray technologies, but 
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proteomics and metabolomics do not yet have stan-

dardized large-scale procedures. Proteome analysis is 

usually performed by two-dimensional gel electropho-

resis and liquid chromatography-mass spectrometry, 

while metabolome analysis can be carried out by gas/

liquid chromatography-mass spectrometry and liquid 

chromatography-nuclear magnetic resonance spectros-

copy. These technologies are usually applied in a 

“differential display” mode, that is, by comparing phe-

notypes in diseased versus healthy subjects to help 

achieve better association of clinical phenotypes with 

the corresponding genotypes. Nutrigenomics data are 

typically generated on a massive scale and require 

computational analyses to derive mechanistic under-

standing of the disease under study (Go et al. 2003). 

 Although “omics” technologies are booming, 

the lack of a robust model system to test nutrigenomics 

principles prior to their application in public health is a 

serious impediment to progress. Relying on risk factor 

assessment, the evidence-based path - from basic dis-

covery to effective prevention strategy - seems long, 

arduous, and confounding. For example, the identifica-

tion of sequence polymorphisms regulating gene ex-

pression is important for understanding human varia-

tion in response to dietary intake (Go et al. 2003, Gins-

burg 2011). In vitro experimental designs for nutrient–

gene interactions using human cell lines offer a con-

trolled study environment. Individual dietary compo-

nents can be tested in vitro for a limited number of 

phenotypes in a dose- and time-dependent manner. 

However, to evaluate the role of a single nucleotide 

polymorphism (SNP), the SNP has to be artificially 

engineered into the cells, making the same experiment 

a three-way study. In principle, modeling patient geno-

types by introduction of gain-of-function or loss-of-

function disease mutations (both common in many 

forms of cancer) into any endogenous gene locus of 

human cells is possible. However, data obtained from 

such a study will be difficult to interpret in the context 

of human populations, where a SNP acts in synergy 

with other genetic and environmental factors. Fortu-

nately, the option of using an in vivo model, such as 

rodents or higher-order mammals, also exists. The 

greatest advantage of a mammalian in vivo model is 

the ability to control induction of the disease pheno-

type (clinical signs), allowing measurements of the 

preventative or curative effects of any nutrient. More-

over, the diet, environment, and other potentially influ-

ential factors can be controlled, monitored, and meas-

ured. However, knowledge about conserved gene regu-

latory elements, such as SNPs, across species is lim-

ited at the present time, making data obtained from in 

vivo models not always translatable to the human con-

dition. 

 The most relevant study system for dietary 

interventions is the human organism, and there is a 

growing trend toward system-wide approaches in pub-

lic health studies. However, these studies have so far 

been limited to either large-scale association-

observation studies or small-to-medium-scale interven-

tion studies. In these studies, there is a preference for 

applying an array of technologies to the same sample, 

allowing physiological changes to be assessed more 

robustly throughout all the molecular layers, including 

mRNA, protein, and metabolite. However, a critical 

assessment of study outcomes reveals uncertainty in 

data interpretation, knowledge gaps, as well as the 

need for improved study designs and more comprehen-

sive phenotyping of volunteers before selection for 

study participation (Wittwer et al. 2011). For example, 

to investigate preventative responses to a diet influ-

enced by a specific SNP or a combination of SNPs is 

challenging at multiple levels. For effective diet-based 

prevention studies, both large-scale and long-term in-

terventions are critical. Screening of a large number of 

subjects for the presence of one or more SNPs, con-

trolling their dietary intake over a long period of time, 

minimizing environmental and lifestyle variations of 

study participants throughout the experimental dura-

tion, indefinite timelines for spontaneous disease phe-

notype occurrence, and compliance issues are just a 

few examples of the potential roadblocks to generating 

an optimal study design. Ultimately, because many 

cases of chronic diseases are influenced by multiple 

dietary factors, nutrition-genome interactions cannot 

be identified unless diet and genotype are controlled 

and crossed over in the experimental design (the same 

diet with different genotypes or different genotypes 

with the same diet). Because human intervention stud-

ies are costly and difficult to conduct, observational 

epidemiologic studies (which mostly detect associa-

tions, not causal relationships) have continued to be 

the gold standard and will likely continue to dominate 

the field of nutrigenomics. However, such observa-

tional designs are not appropriate for preventive inter-

ventions that rely on an understanding of molecular 

mechanisms (Wittwer et al. 2011). 

 A second example from the field of nutrige-

nomics in which a model study system is urgently 

needed is the relationship between diet, epigenetic 

events, and cancer prevention (Go et al. 2003, Ross et 

al. 2008). Cancer is caused by spontaneous mutations 

resulting in both abnormal genetic and epigenetic 

events. Epigenetic events are important mechanisms 

by which gene function is selectively activated or inac-

tivated. One such event, DNA methylation, which is a 

hallmark of multiple human malignancies, involves 

covalent addition of a methyl group to a cytosine resi-
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due within CpG dinucleotides. DNA methylation 

changes gene expression, regulates chromosomal sta-

bility, and is modulated by dietary factors (Ross et al. 

2008). Another example in which diet can regulate an 

epigenetic event involves the Polycomb group (PcG) 

proteins, which function as transcriptional repressors 

through chromatin modification and contribute to the 

pathogenesis of cancer (Kashyap et al. 2011). Histone 

modifications triggered by polycomb repressive com-

plex signaling are important during embryonic stem 

(ES) cell differentiation. The active vitamin A con-

stituent retinoic acid (RA) is involved in differentiation 

of various cancer cells in culture and has been found to 

modify polycomb complex signaling during differen-

tiation of ES cells (Kashyap et al. 2011). Hence, both 

DNA methylation and chromatin modification events 

are excellent examples of processes by which environ-

mental factors, including diet, may modify cancer risk 

and tumor behavior (Ross et al. 2008). 

 To validate basic research findings in human, 

such as whether dietary intake of RA can prevent or 

delay cancer development in relevant high-risk groups, 

once again, well-designed, long-term, and large-scale 

studies will be needed. For example, combining the 

features of a prospective cohort study, a randomized 

controlled trial, “next-generation” measures of diet and 

clinical parameters, as well as extensive biospecimen 

collection and storage for measurement of genetic and 

epigenetic measurements will be critical. The focus 

should be on how individual dietary components influ-

ence epigenetic events and how this correlates with 

phenotypic changes and genotype. Very little informa-

tion currently exists about gene-specific epigenetic 

changes in human as influenced by biologically active 

food components. Furthermore, very little information 

exists to evaluate, in a comprehensive manner, the 

specificity of individual nutrients, the impact of in-

takes and exposures, and any acclimation with time 

and/or tissue specificity. With new technologies and 

falling costs, it is possible to scan and sequence larger 

data sets, with improved statistical power to detect a 

wider spectrum of risk variants. Functional pathway 

analyses, robust methods for power analyses, as well 

as recruiting multidisciplinary teams of experts will be 

critical. Sustainable funding strategies need to be iden-

tified, as the costs of such research will be exorbitant. 

Although, in theory, all of these requirements can be 

met, in reality, such massive studies are difficult to 

plan, implement, and sustain, even when conducted on 

a national scale. A good example of a study of this 

magnitude is the National Children’s Study (NCS), 

which is still only an association type of study without 

any mandated intervention. The NCS was launched in 

2000 when Congress directed the NIH to study “the 

effects of both chronic and intermittent exposures on 

child health and human development”. Law-makers 

specified that the exposures could be biological, 

chemical, physical, or psychosocial and that the study 

should address health disparities and monitor US chil-

dren in all their diversity for 21 years. However, by 

2012, after significant investments have already been 

made, NIH has come to see the study as unsustainable 

in its current design (Wadman 2012). 

 In our laboratory, we use molecular mecha-

nism-based designs in preclinical and human interven-

tions that represent the breadth of current translational 

models for nutrient-gene interaction studies. Yet, we 

are limited in our ability to address all the scientific 

questions we want to ask. No perfect strategy exists at 

present to address this technical roadblock to success-

ful utilization of nutrigenomics principles for improve-

ment of public health. Funding agencies such as the 

NIH are encouraging investigators to seek improve-

ment in research techniques and model systems to bet-

ter accomplish the touted potential of nutrigenomics. A 

robust research model, well-controlled, allowing inter-

play and experimental manipulation of multiple vari-

ants and yet physiologically relevant in terms of hu-

man health interpretations, is urgently needed.  

 We are currently optimizing a physiologically 

more relevant experimental model in our laboratory 

that may allow manipulation of multiple variants in a 

controlled manner and fill in some of the existing gaps 

in nutrigenomics research. This model relies on the 

availability of biologically relevant human tissue 

specimens from diseased and healthy individuals. 

While use of tissue explants in vitro is not novel by 

itself, large-scale experimental platforms utilizing hu-

man tissues and/or primary cells are uncommon in 

nutrigenomics research. The donors are assigned ID 

numbers, while personal identification information, if 

present, is removed. Furthermore, appropriate institu-

tional review board permissions are obtained whenever 

necessary. When a steady supply of relevant tissues is 

identified along with appropriate accompanying 

physiological and/or medical records, the genotype of 

the sample is determined prior to derivation of primary 

cells from these tissues. Controlled treatment of these 

cells, representing many of the physiological com-

plexities of the donor, can be subsequently carried out 

with individual or combinations of dietary factors in a 

time- and concentration-dependent manner. The result-

ing molecular events, including cell signaling re-

sponses or epigenetic events, and their association with 

SNPs can be studied in these live cells. Virtually any 

biological question can be investigated without having 

to deal with research subject compliance issues, inac-

curately controlled experimental parameters, and envi-
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ronmental- or lifestyle-based uncertainties. Age-

matched populations may be studied, and the potential 

exists to follow the same subjects for several years. 

Also, cellular elicitors are used to mimic disease onset 

in a post-treatment manner to help measure the preven-

tive effects of diet. The knowledge generated from 

such a study can be directly utilized to design a very 

specific and small-scale human study. Moreover, since 

diet-based modifications are generally considered a 

safer alternative to pharmacological intervention, it is 

possible that such post-validation in humans will not 

be necessary at all.  

 However, even if the proposed experimental 

model has potential to accelerate progress in nutrige-

nomics research, we anticipate challenges. Primary 

cells live for only a short period of time and cannot be 

passaged beyond a few cycles. Depending on tissue 

sources, variations in their quality is possible. While 

they represent larger populations and are ideally ob-

tained through tissue banks, health-care provider net-

works, and hospitals, batch-to-batch variations will 

need to be factored into data analyses. Moreover, ready 

access to human tissues may be limited. Above all, 

primary cell culture methods are tedious, relatively 

expensive, and require labor-intensive optimization 

prior to actual experiments. Finally, characterizing di-

ets or specific nutrients as genome-damaging or ge-

nome-protecting using primary cells derived from dis-

eased or healthy tissues may still overlook the varia-

tion in benefits that accrue over a lifetime, and in par-

ticular, variation relative to the timing of disease onset. 

Nevertheless, weighing potential benefits versus pit-

falls, policy makers should mandate greater human 

tissue accessibility to researchers.   

 In conclusion, nutrigenomics holds tremen-

dous potential for providing better nutritional advice to 

the general public, genetic subgroups, and individuals. 

Because nutrigenomics requires a deep understanding 

of nutrition, genetics, bioinformatics, and biochemistry 

as well as an expanding array of “omics” technologies, 

it is often difficult, even for professionals, to appreci-

ate the relevance of these disciplines to preventive ap-

proaches for optimizing health, delaying the onset of 

disease, and diminishing disease severity. The findings 

of molecular biochemistry research can positively im-

pact experimental medicine and dietetics research. For 

example, identification of major as well as subtle ge-

netic differences is the first step in better understand-

ing human variation in response to diet and environ-

ment. Subsequently, an intervention discovery plat-

form may identify potential cellular targets. While con-

ventional in vitro and in vivo disease model-based re-

search may still be crucial, human specimen acquisi-

tion also becomes a critical step. Patient-relevant in 

vitro disease models have been a missing link in the 

discovery of novel interventions that are targeted or 

personalized to the unique genetic mutations that de-

fine a patient’s disease type, progression, and, conse-

quently, their inherent or acquired drug sensitivity and 

resistance profiles. However, since protocols for ob-

taining and processing human specimens are limited, 

implementation of human tissue research services will 

be necessary to ensure reproducible and reliable re-

sults. Furthermore, examination of a broad range of 

human specimens of diverse origin with sufficient 

numbers for the necessary statistical power is critical. 

The information obtained from studies with human 

specimens will greatly facilitate the design of clinical 

trials, assisting in the identification of the smaller pa-

tient population that would most likely benefit from 

the targeted experimental dietary intervention. This 

could potentially scale down human intervention stud-

ies to save millions of research dollars and take us a 

step closer to deriving the ultimate benefits of nutrige-

nomics research.  
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