
Bacteria belonging to the Rhodococcus genus are usu-

ally able to synthesize and accumulate variable 

amounts of triacylglycerols (TAG) from diverse car-

bon sources. Although some significant advances in 

the basic knowledge on TAG metabolism in 

rhodococci have been made, the fundamental under-

standing of this process and its regulation remains to 

be clarified. The abundantly available genomic infor-

mation for several rhodococcal species provides the 

possibility for comparative genome analysis on the 

occurrence and distribution of key genes and pathways 

involved in TAG metabolism. Our bioinformatic 

analyses of available databases from six rhodococcal 

strains demonstrated that genes/enzymes for reactions 

related to TAG biosynthesis and degradation, and fatty 

acid β-oxidation are surprisingly abundant in 

rhodococcal genomes. Several genes/enzymes of glyc-

erolipids and fatty acid metabolism are highly repre-

sented in the analyzed genomes. A number of previ-

ously undescribed, new putative genes for glycerolipid 

metabolism in rhodococci have been identified and the 

size of each family has been estimated. 
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platform for comparative genomics 

Introduction 
 

Triacylglycerol (TAG) biosynthesis and accumulation 

is one of the most interesting features of actinobacteria 

belonging to the Rhodococcus genus. Some members 

of this genus can be considered as oleaginous microor-

ganisms since they are able to accumulate more than 

20% (of cellular dry weight) of TAG (Alvarez et al. 

1996). The huge catabolic repertoire of these microor-

ganisms, in addition to their capability to adapt their 

metabolism to a wide range of nutritional conditions, 

make such bacteria promising candidates for bioreme-

diation of polluted environments (Larkin et al. 2005, 

Martínková et al. 2009, Warhurst & Fewson 1994). 

During nitrogen starvation and high C:N rates, as is the 

case during an oil spill in arid soil, cells are able to 

reduce their metabolic activity and their ability to min-

eralize the carbon source, but can significantly increase 

the biosynthesis and accumulation of TAG (Alvarez et 

al. 2000). This process permits a continuous degrada-

tion of environmental pollutants under unbalanced nu-

tritional conditions, as found in the environment 

(Alvarez et al. 2002, Silva et al. 2010). In this context, 

the study of lipid metabolism in rhodococci can en-

hance our understanding of their physiology and their 

responses to diverse environmental conditions during 

bioremediation processes. On the other hand, basic 

knowledge on TAG metabolism in rhodococci may 

provide a new production platform for oils, in the bio-

technology field. The applied potential of bacterial 

TAGs may be similar to that of vegetable sources, 

such as additives for feed, cosmetics, oleochemicals, 

lubricants and biofuels (Alvarez 2010).  

 Among rhodococci, R. opacus PD630 and R. 

jostii RHA1 have been used as research models for 

unraveling the physiology and molecular biology of 

TAG metabolism. Significant advances in the under-

standing of physiology, biochemistry and metabolic 

relationship of TAG accumulation to other pathways 

have occurred in the past few years (Alvarez et al. 

1996, Alvarez et al. 1997, Alvarez et al. 2000, 

Hernández & Alvarez 2010). Moreover, new molecu-

lar studies have allowed the identification of certain 

genes/proteins involved in TAG biosynthesis and their 

accumulation in rhodococci (Alvarez et al. 2008, 

Hernández et al. 2008, Hernández et al. 2012, 

MacEachran et al. 2010). Recently, a large quantity of 

DNA and genomic sequences from rhodococci were 

produced. The comparative analysis of this available 

genomic information may contribute to new insights of 

the lipid field and extend the basic knowledge on TAG 

metabolism to lesser studied rhodococci. In this work, 
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Figure 1. A) Comparative genomic information of the six Rhodococcus strains used in this study. B) Unrooted neighbour-

joining tree based on 16S rRNA sequences (approximately 1,250 bp) showing the relationships between type strains of 

Rhodococcus genus and representatives of the Corynebacterineae suborder. Strains with an available genomic project used in 

this study are highlighted with different colours. Numbers at the nodes indicate percentages of bootstrap support based on 

neighbour-joining analyses of 1,000 resampled datasets. GenBank accession numbers are given in parentheses. The relation-

ship of the species is shown by the horizontal lines that are proportional to the number of nt changes in the 16S rRNA (the 

scale is shown by the bar). Corynebacterium diphtheriae NCTC 11397T 16S rRNA gene was used as outgroup. 
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we report a global and comparative analysis of genes/

proteins involved in TAG metabolism identified from 

the genomes of R. opacus PD630, R. opacus B4, R. 

jostii RHA1, R. erythropolis PR4, R. equi 103S and R. 

fascians F7. Figure 1 shows the genome size, the num-

ber of genes and the database the data were retrieved 

from, as well as the phylogenetic relationship for each 

rhodococcal strain used in this study. 

 

Materials and Methods 
 

Phylogenetic analyses 

For phylogenetic analyses, sequences were aligned 

using the Clustal W program (Thompson et al. 1994) 

and were processed by the Genedoc program (Nicholas 

et al. 1997). Evolutionary trees were inferred using 

maximum-likelihood (Felsenstein 1981), maximum-

parsimony (Kluge & Farris 1969) and neighbor-joining 

(Saitou & Nei 1987) methods. Corynebacterium diph-

theriae NCTC 11397T 16S rRNA gene was used as 

outgroup. The resultant tree topologies were evaluated 

by bootstrap analyses (Felsenstein 1985), based on 

1,000 resamplings, using the SEQBOOT, DNADIST 

and CONSENSE programs in the PHYLIP package 

(Felsenstein 1993). 

 

Analyses of sequences 

Genomes analyzed in this work correspond to the fol-

lowing strains: R. jostii RHA1 (McLeod et al. 2006), 

R. opacus PD630 (Holder et al. 2011), R. opacus B4 

(Na et al. 2005), R. erythropolis PR4 (Sekine et al. 

2006), R. equi 103S (Letek et al. 2010) and R. fascians 

F7 (unpublished results). In this study we retrieved the 

sequences of the genes/proteins involved in the 

rhodococcal TAG metabolism. The protein sequences 

were downloaded from the National Center for Bio-

technology Information (NCBI) website (http://

www.ncbi.nlm.nih.gov/), and in the case of R. fascians 

F7 from Rapid Annotation using the Subsystem Tech-

nology (RAST) server (Aziz et al. 2008). 

 To establish gene occurrence, genes involved 

in each metabolic reaction were identified using path-

ways presented in the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) database (Kanehisa & Goto 

2000) and were also searched by gene annotation or 

enzyme names using the NCBI and RAST Internet 

servers. For most genes and proteins, these sequences 

were used as queries for further searches using the 

BLASTP program in order to find homolog proteins. 

The search was run using the default parameters set by 

the program, considering as homologous proteins those 

with significant alignments (E value ≤ 10-50). Addition-

ally, in these cases we performed specific analyses of 

gene/protein sequences searching for active sites, con-

served domains and/or signal peptides using diverse 

bioinformatic tools: Conserved Domain Database 

(CDD), GenPept, Protein Family Database and Pfam. 

Such sequence analyses allowed us to tentatively iden-

tify several previously undescribed proteins in 

rhodococci. Further analyses using the BLASTP pro-
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Figure 2. Putative pathways involved in TAG degradation in rhodococci. Each reaction in the figure has been numbered to 

provide a reference to Table 3. 
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gram were carried out to identify orthologs among the 

detected homologous proteins, considering the best hit 

with the highest percentage identity. 

 The presence of a signal peptide in lipase 

genes (for extracellular lipases) was analyzed by Sig-

nalP Server 4.0 for Gram positive bacteria using de-

fault parameters. This method provides a prediction of 

the cleavage sites of a probable signal peptide in the 

primary sequence of the protein (Petersen et al. 2011). 

 

Results and Discussions 
 

Triacylglycerol biosynthesis by rhodococci 

The biosynthesis of fatty acids is performed in 

rhodococci by a multienzymatic complex known as 

fatty acid synthase type I (FASI). This complex con-

sists of a unique large protein which catalyzes the suc-

cessive reactions of condensation, reduction, dehydra-

tion and reduction. A unique FASI multienzyme gene 

is present in the genome of all rhodococci examined in 

this study (Table 1). FASI may provide fatty acids for 

phospholipids and TAG synthesis or for mycolic acid 

production after an elongation process mediated by 

FASII. 

 The main pathway for TAG biosynthesis in 

rhodococci seems to occur through three sequential 

acyl transfers from acyl-CoA to a glycerol backbone. 

The pathway involves the sequential acylation of the 

sn-1, 2 positions of glycerol-3-phosphate, resulting in 

the formation of phosphatidic acid. The removal of the 

phosphate group catalysed by the phosphatidic acid 

phosphatase enzyme occurs before the final acylation 

step. In the third acylation reaction, an acyl-residue is 

transferred to the vacant position of diacylglycerol, 

which is the final step of TAG biosynthesis. In general, 

a large number of genes seem to be involved in the 

rhodococcal TAG biosynthesis pathway as is shown in 

Table 1. Whereas the glycerol-3-phosphate O-

acyltransferase enzyme is encoded by one gene in each 

Rhodococcus strain, the genes coding for 1-

acylglycerol-3-phosphate O-acyltransferase (AGPAT), 

phosphatidic acid phosphatase (PAP) and diacylglyc-

erol acyltransferase (DGAT) are more abundant (Table 

1). Interestingly, R. fascians F7 and R. equi 103S pos-

sess only one gene encoding a putative PAP enzyme, 

whereas at least four PAP genes occur in the R. jostii 

RHA1 genome (Table 1). The PAP enzyme catalyzes 

the removal of the phosphate group of phosphatidic 

acid to produce diacylglycerols. The two intermedi-

ates, phosphatidic acid and diacylglycerols, are also 

substrates for the synthesis of membrane phospholip-

ids. Thus, the last step in the pathway, catalyzed by 

DGAT, is the only dedicated step in triacylglycerol 

synthesis. Only two rhodococcal DGATs have been 

cloned and characterized in detail, both from R. opacus 

PD630 (Alvarez et al. 2008, Hernández et al. 2012). 

Both genes, called atf1 and atf2, were in vivo involved 

in TAG biosynthesis and accumulation in the PD630 

strain. In this study, we used multiple sequence align-

ments to determine the potential number of genes en-

coding DGAT enzymes for TAG biosynthesis in the 

available rhodococcal genomes. In general, the latter 

contain several genes coding for putative DGATs, 

even though the DGAT gene number found in ge-

nomes seems to be a strain-dependent feature (Table 

1). All deduced proteins showed the conserved puta-

tive active-site motif HHxxxDG described for bacterial 

DGAT enzymes. The sequence of the RHA1_ro06332 

gene was the most conserved among the rhodococcal 

genomes included in this study (Table 1). Interestingly, 

R. opacus and R. jostii exhibited higher redundancy of 

DGAT genes in their genomes in comparison with R. 

fascians, R. erythropolis and R. equi (Table 1) 

(Alvarez et al. 2008, Holder et al. 2011, Hernández et 

al. 2012). The high content of DGAT genes in R. 

opacus and R. jostii is consistent with their ability to 

produce significant amounts of TAG from different 

substrates, such as gluconate or hexadecane (Alvarez 

et al. 1996, Hernández et al. 2008, Hernández et al. 

2012). The redundancy and diversity of DGAT isoen-

zymes in Rhodococcus may permit cells to incorporate 

fatty acids into TAG with different specificity or to 

activate lipid accumulation under different conditions. 

Detailed studies on different rhodococcal DGATs and 

the other enzymes of the pathway may reveal the 

physiological role of each isoenzyme. 

 

Degradation of triacylglycerols and fatty acids 

Lipid metabolism, particularly the degradation path-

ways of fatty acids and TAG, have been only poorly 

studied in rhodococci in comparison to other bacteria, 

such as E. coli and B. subtillis. Based on the sequence 

homology and some shared biochemical characteristics 

of genes or enzymes from mycobacteria that are in-

volved in lipolysis, it is generally assumed that the ba-

sic pathways of fatty acid and TAG degradation are 

analogous to those reported in other better-studied bac-

teria. Since the evidence obtained from lipolysis in 

rhodococci and related genera is still fragmentary, 

some broad generalizations are made in this section 

based on the putative identification of genes and lim-

ited experimental data. The genomes of rhodococci 

exhibit a very robust lipid catabolic network, with a 

large expansion in homologous genes involved in TAG 

and fatty acid degradation. This indicates that the car-

bon assimilation through lipid metabolism is a relevant 

feature for rhodococcal physiology. Figure 2 repre-

sents the starting framework for our analysis of the 
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public DNA and protein sequence databases. Each re-

action in Figure 2 has been numbered to provide a ref-

erence to Table 2. Our search of available databases 

demonstrated that genes/enzymes for reactions of TAG 

hydrolysis and fatty acid β-oxidation are surprisingly 

abundant in rhodococcal genomes. Several genes/

enzymes of glycerolipid and fatty acid oxidation are 

highly represented in genomes (Table 2). The high ex-

pansion of enzymes involved in glycerolipids and 

other esterified compound hydrolysis indicates the im-

portance of endogenous as well as exogenous lipid 

degradation for rhodococcal metabolism. In this con-

text, it was proposed that lipids are a major growth 

carbon source for R. equi during infection in vivo 

(Letek et al. 2010). This microorganism is a unique 

animal pathogen within the Rhodococcus genus, with 

99   Journal of Molecular Biochemistry, 2013 

Figure 3. Relative proportions of diverse lipolytic enzymes occurring in different Rhodococcus species. Note that genes anno-

tated as “lipases/esterases” in most rhodococcal genomes were annotated as “esterases” for R. opacus B4 and R. erythropolis 

PR4. 

A B 

C D 

E F 



T
ri

a
cy

lg
ly

ce
ro

l 

ca
ta

b
o

li
sm

 

R
. 

 

jo
st

ii
 

R
H

A
1

 

R
. 

 

o
p

a
cu

s 

P
D

6
3

0
 

R
. 

 

o
p

a
cu

s 

B
4

 

R
. 

 

er
yt

h
ro

p
o

li
s 

P
R

4
 

R
. 

 

fa
sc

ia
n

s 

F
7

 

R
. 

 

eq
u

i 

 1
0

3
S

 

R
ea

ct
io

n
 

n
u

m
b

er
 

E
n

zy
m

e 
 

cl
a

ss
if

ic
a

ti
o

n
 

G
en

es
/P

ro
te

in
s 

G
ly

ce
ro

li
p

id
s 

 

h
y

d
ro

ly
si

s 

6
 

1
2

 
1

1
 

3
 

4
 

1
6

 
1

 
3

.1
.1

.3
/ 

3
.1

.1
.2

3
 

T
ri

ac
y

lg
ly

ce
ro

l 
li

p
as

es
/ 

M
o

n
o

ac
y

lg
ly

ce
ro

l 

li
p

as
es

 

2
7

 
1

8
 

3
3

 
2

5
 

1
6

 
2

0
 

1
 

3
.1

.1
.3

 
E

st
er

as
es

 

1
1

 
7

 
  

  
2

 
1

 
1

 
3

.1
.1

.3
 

L
ip

as
as

/e
st

er
as

es
 

Β
-O

x
id

a
ti

o
n

 

7
5

 
1

6
 

6
3

 
6

1
 

2
8

 
4

5
 

2
 

6
.2

.1
.3

 
L

o
n

g
 c

h
ai

n
 f

at
ty

 a
ci

d
 C

o
A

 l
ig

as
e 

1
 

1
 

1
 

1
 

1
 

1
 

3
a 

1
.3

.3
.6

 
A

cy
l 

C
o

A
 o

x
id

as
e 

9
2

 
3

0
 

1
0

1
 

5
8

 
2

9
 

4
7

 
3

a 
1

.3
.9

9
.3

 
A

cy
l 

C
o

A
 d

eh
y

d
ro

g
en

as
e 

1
1

 
1

 
  

  
1

 
  

3
a 

1
.3

.9
9

.1
3

 
L

o
n

g
 c

h
ai

n
 a

cy
l 

C
o

A
 d

eh
y

d
ro

g
en

as
e
 

1
0

 
2

 
  

  
9

 
  

3
a 

1
.3

.8
.1

/1
.3

.9
9

.2
 

B
u

ty
ry

l 
C

o
A

 d
ey

d
ro

g
en

as
e 

4
 

4
 

3
 

1
 

2
 

1
 

3
b

 
1

.3
.1

.3
4

 
2

,4
-d

ie
n

o
y

l 
C

o
A

 r
ed

u
ct

as
e 

6
0

 
5

 
6

8
 

4
1

 
1

5
 

2
4

 
4

 
4

.2
.1

.1
7

 
E

n
o

y
l 

C
o

A
 h

y
d

ra
ta

se
 

1
1

 
3

 
9

 
4

 
5

 
2

 
5

 
1

.1
.1

.3
5

 
3

-H
y

d
ro

x
y

ac
y

l 
C

o
A

 d
eh

y
d

ro
g

en
as

e 

3
 

4
 

3
 

1
 

4
 

1
 

4
/5

 
N

D
 

E
n

o
y

l 
C

o
A

 h
y

d
ra

ta
se

/ 
3

-H
y

d
ro

x
y

ac
y

l 
C

o
A

  

d
eh

y
d

ro
g

en
as

e 
co

m
p

le
x

es
 

3
8

 
1

0
 

3
3

 
2

8
 

1
1

 
1

8
 

6
 

2
.3

.1
.1

6
/2

.3
.1

.9
 

A
ce

ty
l 

C
o

A
 a

cy
l 

tr
an

sf
er

as
e
 

G
ly

o
x

y
la

te
  

cy
cl

e 

1
 

1
 

1
 

1
 

1
 

1
 

7
 

4
.1

.3
.1

 
Is

o
ci

tr
at

e 
ly

as
e 

2
 

3
 

2
 

1
 

1
 

1
 

8
 

2
.3

.3
.9

 
M

al
at

e 
sy

n
th

as
e 

E
x

tr
a

ce
ll

u
la

r 
 

g
ly

ce
ro

li
p

id
  

h
y

d
ro

ly
si

s 

2
4

 
6

 
8

 
1

0
 

1
5

 
1

6
 

  
N

D
 

S
ec

re
te

d
 l

ip
as

es
 

G
en

e 
oc

cu
rr

en
ce

 

0
 

  

1
-1

0
 

  

1
1

-2
0
 

  

2
1

-3
0
 

  

3
1

-4
0
 

  

>
4

0
 

  

T
a

b
le

 2
. 

G
en

e 
o

cc
u
rr

en
ce

 r
el

a
te

d
 t

o
 t

ri
ac

y
lg

ly
ce

ro
l 

ca
ta

b
o

li
sm

 f
o

r 
sp

ec
ie

s 
o

f 
th

e 
R

h
o

d
o

co
cc

u
s 

g
en

u
s.

 



the ability to inhabit within macrophages. There, cells 

find a lipid-rich environment with abundant availabil-

ity of host cell lipids for fatty acid oxidation. The 

abundance of secreted lipases in the R. equi 103S ge-

nome (16 enzymes) reflects this situation (Table 2). 

Several secreted lipases as well as intracellular lipid-

degrading enzymes also occur in the genome of sapro-

phyte rhodococci, as shown in Table 2. Extracellular 

lipolytic enzymes may permit rhodococcal cells to de-

grade diverse lipids in the environment, which may 

occur in plants exudates or in the extracellular poly-

meric substances produced by cells during stress con-

ditions, such as desiccation. In addition, intracellular 

lipids may account for 70% of dry weight of rhodococ-

cal cells; thus, diverse lipases or esterases may contrib-

ute to the efficient lipid homeostasis during the life 

cycle of cells. Figure 3 shows the relative distribution 

of intracellular and extracellular lipolytic enzymes in 

rhodococcal genomes. In general, phospholipase en-

zymes responsible for phospholipid degradation and 

turnover are less abundant than neutral lipid-degrading 

enzymes in all analyzed genomes (Figure 3). Some 

additional generalizations could be made from Figure 

3: (i) R. jostii RHA1 and R. fascians F7 seem to be 

enriched with secretory lipases genes (31 and 37% of 

total lipolytic enzymes, respectively), followed by R. 

erythropolis PR4 and R. equi 103S (25 and 29%, re-

spectively). The genome of R. opacus (strains B4 and 

PD630) possesses a lesser proportion of secretory li-

pases in comparison to other rhodococci (Figure 3). In 

contrast, R. opacus exhibits the higher content of intra-

cellular lipolytic enzymes, which is concordant with its 

ability to accumulate large amounts of intracellular 

TAG. Taken together, rhodococcal genomes possess a 

large set of lipolytic enzymes which may be involved 

in the mobilization of lipids in concert with other en-

zymes and proteins. Cells may require a complex regu-

latory network to finely control lipid metabolism under 

diverse environmental conditions. Although all studied 

rhodococci exhibit a high redundancy of lipolytic en-

zymes in their genomes, the relative proportion of each 

type of enzyme may depend on their particular physi-

ology. There is only one report on the characterization 

of a rhodococcal lipase available. Bassegoda et al. 

(2012) cloned, purified and characterized the first li-

pase enzyme of this genus; in a strain of R. erythropo-

lis (CR-53) isolated from a subtropical soil sample in 

Puerto Iguazú, Argentina (Ruiz et al. 2005). The en-

zyme, named LipR, was a secretory lipase exhibiting 

preference for medium-chain length acyl groups and 

showing high activity in a wide range of temperatures 

(4 to 60 ºC) (Bassegoda et al. 2012). Interestingly, this 

enzyme seems to belong to a new family of bacterial 

lipases which was included in family X, showing simi-

lar conserved motifs to the Candida antartica lipase 

clan. On the other hand, some lipases have been puri-

fied and characterized in related mycobacteria. Low et 

al. (2010) reported the occurrence of a lipolytic en-

zyme (BCG1721) associated to the lipid inclusion bod-

ies, among other proteins involved in TAG metabo-

lism. The authors assumed that BCG1721 was a bi-

functional enzyme with lipase and potential long chain 
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Figure 4. Organization of different genomic clusters occurring in R. jostii RHA1, containing putative genes involved in reac-

tions of the β-oxidation pathway. 



acyl-CoA synthase activities, probably involved in 

both anabolism and catabolism of TAG in Mycobacte-

rium bovis BCG (Low et al. 2010). Some lipolytic en-

zymes occurring in rhodococcal genomes may share 

similar properties with those present in mycobacteria. 

Further studies are necessary to identify and function-

ally characterize the rhodococcal lipolytic enzymes in 

order to understand their role in TAG metabolism. 

 The lipolytic enzymes hydrolyze TAG to yield 

nonesterified fatty acids, which may be derivatized to 

acyl-CoA. These products may subsequently be used 

in different metabolic pathways, such as the synthesis 

of phospholipids or re-esterification to TAG, depend-

ing on cellular necessities. Fatty acyl-CoA may even-

tually be degraded partially or completely by the β-

oxidation pathway as shown in Figure 2. This catabolic 

route may serve in rhodococci not only for generating 

energy and precursors from lipids, but also as a source 

of fatty acids for TAG accumulation principally during 

growth on n-alkanes (Alvarez et al. 1997, Alvarez 

2003). Some insights into the catabolism of fatty acids 

in rhodococci can be gained using a comparative ge-

nomic approach based on the available genome se-

quences. Our search of genomic databases suggests 

that rhodococci possess a complete and well conserved 

machinery for fatty acid oxidation (Figure 2), exhibit-

ing a high number of genes involved in different reac-

tions of the pathway (Table 2). Several paralogous 

genes may be involved in the β-oxidation of fatty acids 

in rhodococci with similar functionality but with dif-

ferences in their spatial activities and substrate stereo-

specificity. Our sequence analysis indicates that gene 

content and organization in rhodococcal genomes are 

similar to that of mycobacteria. In contrast to E. coli, 

where the fadA and fadB genes form a single operon 

encoding the two proteins of the β-oxidation multi-

enzyme complex (DiRusso 1990, Taylor et al. 2010), 

M. tuberculosis as well as rhodococci carry several 

fadA and fadB genes in their genomes. This enzyme 

redundancy occurring in actinobacteria may allow cells 

to accept a wide range of chain lengths as substrates, 

such as short-, medium- and long-chain molecules, 

and/or to activate fatty acid degradation under diverse 

environmental conditions. Further studies including 

gene cloning and enzyme purification and characteri-

zation are required to understand the specific role of 

each isoenzyme involved in fatty acid degradation in a 

physiological context in rhodococci. The fadB2 gene 

of M. tuberculosis and other mycobacteria, which 

codes for a β-hydroxybutyryl-CoA dehydrogenase, is 

located in the genome adjacent to icl1, encoding the 

glyoxylate shunt enzyme isocitrate lyase (Taylor et al. 

2010). The glyoxylate cycle allows cells to convert 

acetyl-CoA released by the β-oxidation pathway to 

succinate for the synthesis of carbohydrates, when 

cells are growing on fatty acids or acetate. A homolo-

gous gene was identified in R. jostii RHA1, which was 

annotated as a 3-hydroxybutyryl-CoA dehydrogenase 

(hdb1), showing 73% amino acid identity to Mt-fadB2. 

hdb1 gene (ro02121) is situated in a conserved locus 

next to the isocitrate lyase gene, comparable with that 

of M. tuberculosis Mt-fadB2 (Figure 4). The same 

gene organization also occurs in other rhodococci. In-

terestingly, Kelly et al. (2002) have reported that the 
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Figure 5. Alignments of glxR genes from diverse actinobacteria, including the six rhodococcal strains of this study. C., Cory-

nebacterium; M., Mycobacterium; R., Rhodococcus. 



isocitrate lyase gene (aceA) and fadB2 are co-

transcribed into a 2.8 kb transcript during the growth 

of R. equi on acetate as its sole carbon source. A simi-

lar situation may occur in free-living rhodococci in 

order to couple the carbon flux through the β-oxidation 

pathway and glyoxylate shunt during fatty acid assimi-

lation (Figure 2). On the other hand, the conserved 

clustered rearrangements of fadB1 and fadB2, together 

with thiolase enzymes (fadA) in rhodococci suggests 

that those proteins may form a multienzymatic com-

plex in a way similar to E.coli and B. subtillis (Figure 

4). In these microorganisms, the β-oxidation pathway 

is globally regulated by fadR, which executes a nega-

tive control of catabolic genes in the absence of fatty 

acyl compounds. No homologous fadR genes were 

found in rhodococcal or mycobacterial genomes, sug-

gesting that the regulation of the β-oxidation pathway 

is different in actinobacteria. Interestingly, Kim et al. 

(2004) identified the glxR gene involved in the regula-

tion of the glyoxylate bypass in Corynebacterium glu-

tamicum; a related mycolic acid-containing actinobac-

terium. The GlxR protein, which may form dimers, 

binds to the aceB promoter region in the presence of 

cAMP and repress the glyoxylate bypass genes (Kim 

et al. 2004). Bioinformatic analyses indicated that the 

glxR gene was highly conserved in the genome of all 

rhodococci of this study, as well as in other actinobac-

teria (Figure 5). This suggested that GlxR-like proteins 

may be one of the regulatory proteins involved in the 

degradation and assimilation of fatty acids in 

rhodococci. An unknown regulatory network must 

finely regulate TAG/fatty acid degradation and biosyn-

thesis based on the availability of fatty acids. The key 

regulatory components and its organization, involved 

in the control of lipid homeostasis in rhodococci, re-

main to be elucidated. 

 

Conclusions 
 

Our study revealed additional insights of the distribu-

tion of genes involved in TAG accumulation and mo-

bilization and some differences between the abundance 

of genes of the TAG metabolism among rhodococcal 

species. It is clear that Rhodococcus bacteria became 

specialists for TAG biosynthesis and accumulation 

during evolution. In this context, some rhodococcal 

species, such as R. opacus and R. jostii, were highly 

enriched with genes for the biosynthesis and degrada-

tion of fatty acids and TAG. Members of R. erythropo-

lis, R. equi and R. fascians also have a complete set of 

genes/proteins for supporting TAG biosynthesis, accu-

mulation and mobilization. However, these microor-

ganisms seem to possess a more simplified configura-

tion for TAG metabolism, in comparison to R. opacus 

and R. jostii. This study represents a starting frame-

work, which may contribute to the development of a 

functional catalog of rhodococcal genes involved in 

TAG metabolism. This information will require revi-

sion and update as more genomic and functional genet-

ics of rhodococci become available. In addition, the 

functional identification and characterization of the 

key genes involved in TAG metabolism, including 

those participating in regulatory mechanisms, will be 

one of the major challenges in this field. 
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