Retroviral proteases: correlating substrate recognition with both selected and native inhibitor resistance

Gary S Laco

Abstract


A diverse group of retroviral proteases were analyzed to correlate mechanisms of substrate recognition with resistance to HIV-1 protease active-site inhibitors. Here it was shown that HIV-1 protease utilized a pathway common to many retroviral proteases, for recognition of mutated Gag/Pol cleavage sites, in order to become resistant to active-site inhibitors. While HIV-1 and HIV-2 resulted from independent cross-species transmissions of simian immunodeficiency virus into humans, HIV-2 has native primary resistance to many HIV-1 protease inhibitors as do many other retroviral proteases. The native multi-drug resistance of those proteases contributed to the lack of treatments for the respective life-long infections. Analysis of interactions between retroviral proteases and Gag/Pol substrates revealed that protease interactions weighted towards cleavage site residues P4-P4' resulted in inhibitor sensitivity, while interactions weighted towards residues P12-P5/P5'-P12' gave inhibitor resistance. In addition, a mechanism was identified for human T-cell leukemia virus type-1 protease that allowed re-weighting of the protease interactions with substrate residues P4-P4' and P12-P5/P5'-P12' using anti-parallel beta-sheets that connected the protease flaps to the substrate-grooves. Those anti-parallel beta-sheets are common to all studied retroviral proteases. The critical role of the retroviral protease substrate-grooves in substrate recognition and inhibitor resistance makes them a potential target.


Keywords


active-site inhibitor; cross-species transmission; native resistance; retroviral protease; selected resistance; substrate-grooves; anti-parallel beta-sheet

References


Barre-Sinoussi, F., Chermann, J. C., Rey, F., Nugeyre, M. T., Chamaret, S., Gruest, J., et al. (1983). Isolation of a t-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science, 220(4599), 868-871.

Bharat, T. A., Castillo Menendez, L. R., Hagen, W. J., Lux, V., Igonet, S., Schorb, M., et al. (2014). Cryo-electron microscopy of tubular arrays of hiv-1 gag resolves structures essential for immature virus assembly. Proc. Natl. Acad. Sci. U. S. A., 111(22), 8233-8238.

Billich, S., Knoop, M. T., Hansen, J., Strop, P., Sedlacek, J., Mertz, R., et al. (1988). Synthetic peptides as substrates and inhibitors of human immune deficiency virus-1 protease. J. Biol. Chem., 263(34), 17905-17908.

Birk, M., & Sonnerborg, A. (1998). Variations in hiv-1 pol gene associated with reduced sensitivity to antiretroviral drugs in treatment-naive patients. Aids, 12(18), 2369-2375.

Bossi, P., Mouroux, M., Yvon, A., Bricaire, F., Agut, H., Huraux, J. M., et al. (1999). Polymorphism of the human immunodeficiency virus type 1 (hiv-1) protease gene and response of HIV-1-infected patients to a protease inhibitor. J Clin Microbiol, 37(9), 2910-2912.

Brower, E. T., Bacha, U. M., Kawasaki, Y., & Freire, E. (2008). Inhibition of HIV-2 protease by HIV-1 protease inhibitors in clinical use. Chem. Biol. Drug Des., 71(4), 298-305.

Chang, M. W., & Torbett, B. E. (2011). Accessory mutations maintain stability in drug-resistant hiv-1 protease. J. Mol. Biol., 410(4), 756-760.

Chen, Z., Li, Y., Schock, H. B., Hall, D., Chen, E., & Kuo, L. C. (1995). Three-dimensional structure of a mutant hiv-1 protease displaying cross-resistance to all protease inhibitors in clinical trials. J. Biol. Chem., 270(37), 21433-21436.

Consortium, T. U. (2015). Uniprot: A hub for protein information. Nucleic Acids Res., 43(Database issue), D204-212.

Cook, R. F., Leroux, C., & Issel, C. J. (2013). Equine infectious anemia and equine infectious anemia virus in 2013: A review. Vet. Microbiol., 167(1-2), 181-204.

D'Arc, M., Ayouba, A., Esteban, A., Learn, G. H., Boue, V., Liegeois, F., et al. (2015). Origin of the HIV-1 group O epidemic in western lowland gorillas. Proc. Natl. Acad. Sci. U. S. A., 112(11), E1343-1352.

Darke, P. L., Nutt, R. F., Brady, S. F., Garsky, V. M., Ciccarone, T. M., Leu, C. T., et al. (1988). HIV-1 protease specificity of peptide cleavage is sufficient for processing of gag and pol polyproteins. Biochem. Biophys. Res. Commun., 156(1), 297-303.

Deng, K., Pertea, M., Rongvaux, A., Wang, L., Durand, C. M., Ghiaur, G., et al. (2015). Broad ctl response is required to clear latent HIV-1 due to dominance of escape mutations. Nature, 517(7534), 381-385.

Desbois, D., Roquebert, B., Peytavin, G., Damond, F., Collin, G., Benard, A., et al. (2008). In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors. Antimicrob. Agents. Chemother., 52(4), 1545-1548.

Ding, Y. S., Rich, D. H., & Ikeda, R. A. (1998). Substrates and inhibitors of human t-cell leukemia virus type I protease. Biochemistry, 37(50), 17514-17518.

Edgar, R. C. (2004). Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 32(5), 1792-1797.

Erickson-Viitanen, S., Manfredi, J., Viitanen, P., Tribe, D. E., Tritch, R., Hutchison, C. A., 3rd, et al. (1989). Cleavage of HIV-1 Gag polyprotein synthesized in vitro: Sequential cleavage by the viral protease. AIDS Res. Hum. Retroviruses, 5(6), 577-591.

Erickson, J., Neidhart, D. J., VanDrie, J., Kempf, D. J., Wang, X. C., Norbeck, D. W., et al. (1990). Design, activity, and 2.8 a crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease. Science, 249(4968), 527-533.

Fodor, S. K., & Vogt, V. M. (2002). Characterization of the protease of a fish retrovirus, walleye dermal sarcoma virus. J. Virol., 76(9), 4341-4349.

Fossen, T., Wray, V., Bruns, K., Rachmat, J., Henklein, P., Tessmer, U., et al. (2005). Solution structure of the human immunodeficiency virus type 1 p6 protein. J. Biol. Chem., 280(52), 42515-42527.

Frieden, T. R., Foti, K. E., & Mermin, J. (2015). Applying public health principles to the HIV epidemic--how are we doing? N. Engl. J. Med., 373(23), 2281-2287.

Gallo, R. C., Sarin, P. S., Gelmann, E. P., Robert-Guroff, M., Richardson, E., Kalyanaraman, V. S., et al. (1983). Isolation of human t-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science, 220(4599), 865-867.

Gao, F., Bailes, E., Robertson, D. L., Chen, Y., Rodenburg, C. M., Michael, S. F., et al. (1999). Origin of HIV-1 in the chimpanzee pan troglodytes troglodytes. Nature, 397(6718), 436-441.

Gomez, R., Jolly, S. J., Williams, T., Vacca, J. P., Torrent, M., McGaughey, G., et al. (2011). Design and synthesis of conformationally constrained inhibitors of non-nucleoside reverse transcriptase. J. Med. Chem., 54(22), 7920-7933.

Goncalves, D. U., Proietti, F. A., Ribas, J. G., Araujo, M. G., Pinheiro, S. R., Guedes, A. C., et al. (2010). Epidemiology, treatment, and prevention of human t-cell leukemia virus type 1-associated diseases. Clin. Microbiol. Rev., 23(3), 577-589.

Gres, A. T., Kirby, K. A., KewalRamani, V. N., Tanner, J. J., Pornillos, O., & Sarafianos, S. G. (2015). X-ray crystal structures of native hiv-1 capsid protein reveal conformational variability. Science, 349(6243), 99-103.

Gulnik, S. V., Suvorov, L. I., Liu, B., Yu, B., Anderson, B., Mitsuya, H., et al. (1995). Kinetic characterization and cross-resistance patterns of HIV-1 protease mutants selected under drug pressure. Biochemistry, 34(29), 9282-9287.

Gustchina, A., Kervinen, J., Powell, D. J., Zdanov, A., Kay, J., & Wlodawer, A. (1996). Structure of equine infectious anemia virus proteinase complexed with an inhibitor. Protein. Sci., 5(8), 1453-1465.

Hirsch, V. M., Olmsted, R. A., Murphey-Corb, M., Purcell, R. H., & Johnson, P. R. (1989). An african primate lentivirus (SIVsm) closely related to HIV-2. Nature, 339(6223), 389-392.

Huet, T., Cheynier, R., Meyerhans, A., Roelants, G., & Wain-Hobson, S. (1990). Genetic organization of a chimpanzee lentivirus related to HIV-1. Nature, 345(6273), 356-359.

Ishima, R., Torchia, D. A., Lynch, S. M., Gronenborn, A. M., & Louis, J. M. (2003). Solution structure of the mature HIV-1 protease monomer: Insight into the tertiary fold and stability of a precursor. J. Biol. Chem., 278(44), 43311-43319.

Jacks, T., Power, M. D., Masiarz, F. R., Luciw, P. A., Barr, P. J., & Varmus, H. E. (1988). Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature, 331(6153), 280-283.

Kaplan, A. H., Michael, S. F., Wehbie, R. S., Knigge, M. F., Paul, D. A., Everitt, L., et al. (1994). Selection of multiple human immunodeficiency virus type 1 variants that encode viral proteases with decreased sensitivity to an inhibitor of the viral protease. Proc. Natl. Acad. Sci. U. S. A., 91(12), 5597-5601.

Kearney, M., Palmer, S., Maldarelli, F., Shao, W., Polis, M. A., Mican, J., et al. (2008). Frequent polymorphism at drug resistance sites in HIV-1 protease and reverse transcriptase. Aids, 22(4), 497-501.

Kervinen, J., Lubkowski, J., Zdanov, A., Bhatt, D., Dunn, B. M., Hui, K. Y., et al. (1998). Toward a universal inhibitor of retroviral proteases: Comparative analysis of the interactions of lp-130 complexed with proteases from HIV-1, fiv, and eiav. Protein Sci., 7(11), 2314-2323.

King, N. M., Prabu-Jeyabalan, M., Bandaranayake, R. M., Nalam, M. N., Nalivaika, E. A., Ozen, A., et al. (2012). Extreme entropy-enthalpy compensation in a drug-resistant variant of HIV-1 protease. ACS Chem. Biol., 7(9), 1536-1546.

Kohl, N. E., Emini, E. A., Schleif, W. A., Davis, L. J., Heimbach, J. C., Dixon, R. A., et al. (1988). Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. U. S. A., 85(13), 4686-4690.

Kolli, M., Ozen, A., Kurt-Yilmaz, N., & Schiffer, C. A. (2014). HIV-1 protease-substrate coevolution in nelfinavir resistance. J. Virol., 88(13), 7145-7154.

Koralnik, I. J., Boeri, E., Saxinger, W. C., Monico, A. L., Fullen, J., Gessain, A., et al. (1994). Phylogenetic associations of human and simian t-cell leukemia/lymphotropic virus type i strains: Evidence for interspecies transmission. J. Virol., 68(4), 2693-2707.

Kotler, M., Katz, R. A., Danho, W., Leis, J., & Skalka, A. M. (1988). Synthetic peptides as substrates and inhibitors of a retroviral protease. Proc. Natl. Acad. Sci. U. S. A., 85(12), 4185-4189.

Kourjian, G., Xu, Y., Mondesire-Crump, I., Shimada, M., Gourdain, P., & Le Gall, S. (2014). Sequence-specific alterations of epitope production by HIV protease inhibitors. J. Immunol., 192(8), 3496-3506.

Kovalevsky, A. Y., Louis, J. M., Aniana, A., Ghosh, A. K., & Weber, I. T. (2008). Structural evidence for effectiveness of darunavir and two related antiviral inhibitors against HIV-2 protease. J Mol Biol, 384(1), 178-192.

Kozal, M. J., Shah, N., Shen, N., Yang, R., Fucini, R., Merigan, T. C., et al. (1996). Extensive polymorphisms observed in HIV-1 clade b protease gene using high-density oligonucleotide arrays. Nat Med, 2(7), 753-759.

Kozisek, M., Bray, J., Rezacova, P., Saskova, K., Brynda, J., Pokorna, J., et al. (2007). Molecular analysis of the HIV-1 resistance development: Enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants. J. Mol. Biol., 374(4), 1005-1016.

Krausslich, H. G., Ingraham, R. H., Skoog, M. T., Wimmer, E., Pallai, P. V., & Carter, C. A. (1989). Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides. Proc. Natl. Acad. Sci. U. S. A., 86(3), 807-811.

Laco, G. S. (2011). Evaluation of two models for human topoisomerase i interaction with dsdna and camptothecin derivatives. PLoS One, 6(8), e24314.

Laco, G. S. (2015). HIV-1 protease substrate-groove: Role in substrate recognition and inhibitor resistance. Biochimie, 118, 90-103.

Laco, G. S., Schalk-Hihi, C., Lubkowski, J., Morris, G., Zdanov, A., Olson, A., et al. (1997). Crystal structures of the inactive d30n mutant of feline immunodeficiency virus protease complexed with a substrate and an inhibitor. Biochemistry, 36(35), 10696-10708.

Lazaro, S., Gamarra, D., & Del Val, M. (2015). Proteolytic enzymes involved in mhc class i antigen processing: A guerrilla army that partners with the proteasome. Mol. Immunol., 68(2 Pt A), 72-76.

Le Grice, S. F., Mills, J., & Mous, J. (1988). Active site mutagenesis of the aids virus protease and its alleviation by trans complementation. EMBO J., 7(8), 2547-2553.

Lee, B. M., De Guzman, R. N., Turner, B. G., Tjandra, N., & Summers, M. F. (1998). Dynamical behavior of the HIV-1 nucleocapsid protein. J. Mol. Biol., 279(3), 633-649.

Leigh Brown, A. J., Frost, S. D., Mathews, W. C., Dawson, K., Hellmann, N. S., Daar, E. S., et al. (2003). Transmission fitness of drug-resistant human immunodeficiency virus and the prevalence of resistance in the antiretroviral-treated population. J. Infect. Dis., 187(4), 683-686.

Lemey, P., Pybus, O. G., Wang, B., Saksena, N. K., Salemi, M., & Vandamme, A. M. (2003). Tracing the origin and history of the HIV-2 epidemic. Proc. Natl. Acad. Sci. U. S. A., 100(11), 6588-6592.

Li, M., Laco, G. S., Jaskolski, M., Rozycki, J., Alexandratos, J., Wlodawer, A., et al. (2005). Crystal structure of human t cell leukemia virus protease, a novel target for anticancer drug design. Proc. Natl. Acad. Sci. U. S. A., 102(51), 18332-18337.

Lin, Y. C., Beck, Z., Lee, T., Le, V. D., Morris, G. M., Olson, A. J., et al. (2000). Alteration of substrate and inhibitor specificity of feline immunodeficiency virus protease. J. Virol., 74(10), 4710-4720.

Liu, F., Kovalevsky, A. Y., Tie, Y., Ghosh, A. K., Harrison, R. W., & Weber, I. T. (2008). Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir. J. Mol. Biol., 381(1), 102-115.

Liu, Z., Yedidi, R. S., Wang, Y., Dewdney, T. G., Reiter, S. J., Brunzelle, J. S., et al. (2013a). Crystallographic study of multi-drug resistant HIV-1 protease lopinavir complex: Mechanism of drug recognition and resistance. Biochem. Biophys. Res. Commun., 437(2), 199-204.

Liu, Z., Yedidi, R. S., Wang, Y., Dewdney, T. G., Reiter, S. J., Brunzelle, J. S., et al. (2013b). Insights into the mechanism of drug resistance: X-ray structure analysis of multi-drug resistant HIV-1 protease ritonavir complex. Biochem. Biophys. Res. Commun., 431(2), 232-238.

Louis, J. M., Oroszlan, S., & Tozser, J. (1999). Stabilization from autoproteolysis and kinetic characterization of the human t-cell leukemia virus type 1 proteinase. J. Biol. Chem., 274(10), 6660-6666.

Lv, Z., Chu, Y., & Wang, Y. (2015). HIV protease inhibitors: A review of molecular selectivity and toxicity. HIV AIDS (Auckl), 7, 95-104.

Martinez-Picado, J., Savara, A. V., Sutton, L., & D'Aquila, R. T. (1999). Replicative fitness of protease inhibitor-resistant mutants of human immunodeficiency virus type 1. J. Virol., 73(5), 3744-3752.

Marx, P. A., Li, Y., Lerche, N. W., Sutjipto, S., Gettie, A., Yee, J. A., et al. (1991). Isolation of a simian immunodeficiency virus related to human immunodeficiency virus type 2 from a west african pet sooty mangabey. J. Virol., 65(8), 4480-4485.

Masse, S., Lu, X., Dekhtyar, T., Lu, L., Koev, G., Gao, F., et al. (2007). In vitro selection and characterization of human immunodeficiency virus type 2 with decreased susceptibility to lopinavir. Antimicrob. Agents Chemother., 51(9), 3075-3080.

McKinnon, J. E., Delgado, R., Pulido, F., Shao, W., Arribas, J. R., & Mellors, J. W. (2011). Single genome sequencing of HIV-1 gag and protease resistance mutations at virologic failure during the ok04 trial of simplified versus standard maintenance therapy. Antivir. Ther., 16(5), 725-732.

McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y. M., Buso, N., et al. (2015). Analysis tool web services from the embl-ebi. Nucleic Acids Res., 41(Web Server issue), W597-600.

Miller, M., Schneider, J., Sathyanarayana, B. K., Toth, M. V., Marshall, G. R., Clawson, L., et al. (1989). Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 a resolution. Science, 246(4934), 1149-1152.

Mocroft, A., Ruiz, L., Reiss, P., Ledergerber, B., Katlama, C., Lazzarin, A., et al. (2003). Virological rebound after suppression on highly active antiretroviral therapy. Aids, 17(12), 1741-1751.

Nijhuis, M., Schuurman, R., de Jong, D., Erickson, J., Gustchina, E., Albert, J., et al. (1999). Increased fitness of drug resistant HIV-1 protease as a result of acquisition of compensatory mutations during suboptimal therapy. Aids, 13(17), 2349-2359.

Ovchinnikov, S., Kim, D. E., Wang, R. Y., Liu, Y., DiMaio, F., & Baker, D. (2016). Improved de novo structure prediction in casp11 by incorporating coevolution information into rosetta. Proteins, 84, 67-75.

Pazhanisamy, S., Stuver, C. M., Cullinan, A. B., Margolin, N., Rao, B. G., & Livingston, D. J. (1996). Kinetic characterization of human immunodeficiency virus type-1 protease-resistant variants. J. Biol. Chem., 271(30), 17979-17985.

Pearl, L. H., & Taylor, W. R. (1987). Sequence specificity of retroviral proteases. Nature, 328(6130), 482.

Pecon-Slattery, J., Troyer, J. L., Johnson, W. E., & O'Brien, S. J. (2008). Evolution of feline immunodeficiency virus in felidae: Implications for human health and wildlife ecology. Vet. Immunol. Immunopathol., 123(1-2), 32-44.

Peeters, M., Honore, C., Huet, T., Bedjabaga, L., Ossari, S., Bussi, P., et al. (1989). Isolation and partial characterization of an HIV-related virus occurring naturally in chimpanzees in gabon. Aids, 3(10), 625-630.

Pei, J., Kim, B. H., & Grishin, N. V. (2008). Promals3d: A tool for multiple protein sequence and structure alignments. Nucleic Acids Res., 36(7), 2295-2300.

Pettit, S. C., Henderson, G. J., Schiffer, C. A., & Swanstrom, R. (2002). Replacement of the p1 amino acid of human immunodeficiency virus type 1 gag processing sites can inhibit or enhance the rate of cleavage by the viral protease. J. Virol., 76(20), 10226-10233.

Pettit, S. C., Lindquist, J. N., Kaplan, A. H., & Swanstrom, R. (2005). Processing sites in the human immunodeficiency virus type 1 (HIV-1) gag-pro-pol precursor are cleaved by the viral protease at different rates. Retrovirology, 2, 66.

Pettit, S. C., Sanchez, R., Smith, T., Wehbie, R., Derse, D., & Swanstrom, R. (1998). HIV type 1 protease inhibitors fail to inhibit HTLV-I Gag processing in infected cells. AIDS Res. Hum. Retroviruses, 14(11), 1007-1014.

Phillips, R. E., Rowland-Jones, S., Nixon, D. F., Gotch, F. M., Edwards, J. P., Ogunlesi, A. O., et al. (1991). Human immunodeficiency virus genetic variation that can escape cytotoxic t cell recognition. Nature, 354(6353), 453-459.

Prabu-Jeyabalan, M., Nalivaika, E., & Schiffer, C. A. (2002). Substrate shape determines specificity of recognition for HIV-1 protease: Analysis of crystal structures of six substrate complexes. Structure, 10(3), 369-381.

Prabu-Jeyabalan, M., Nalivaika, E. A., King, N. M., & Schiffer, C. A. (2004). Structural basis for coevolution of a human immunodeficiency virus type 1 nucleocapsid-p1 cleavage site with a v82a drug-resistant mutation in viral protease. J. Virol., 78(22), 12446-12454.

Prince, J. L., Claiborne, D. T., Carlson, J. M., Schaefer, M., Yu, T., Lahki, S., et al. (2012). Role of transmitted gag ctl polymorphisms in defining replicative capacity and early HIV-1 pathogenesis. PLoS Pathog., 8(11), e1003041.

Proietti, F. A., Carneiro-Proietti, A. B., Catalan-Soares, B. C., & Murphy, E. L. (2005). Global epidemiology of HTLV-I infection and associated diseases. Oncogene, 24(39), 6058-6068.

Ratner, L., Haseltine, W., Patarca, R., Livak, K. J., Starcich, B., Josephs, S. F., et al. (1985). Complete nucleotide sequence of the aids virus, HTLV-III. Nature, 313(6000), 277-284.

Rhee, S. Y., Gonzales, M. J., Kantor, R., Betts, B. J., Ravela, J., & Shafer, R. W. (2003). Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res., 31(1), 298-303.

Richman, D. D., Morton, S. C., Wrin, T., Hellmann, N., Berry, S., Shapiro, M. F., et al. (2004). The prevalence of antiretroviral drug resistance in the united states. Aids, 18(10), 1393-1401.

Rodes, B., Sheldon, J., Toro, C., Jimenez, V., Alvarez, M. A., & Soriano, V. (2006). Susceptibility to protease inhibitors in HIV-2 primary isolates from patients failing antiretroviral therapy. J. Antimicrob. Chemother., 57(4), 709-713.

Rose, R. B., Craik, C. S., Douglas, N. L., & Stroud, R. M. (1996a). Three-dimensional structures of HIV-1 and SIV protease product complexes. Biochemistry, 35(39), 12933-12944.

Rose, R. E., Gong, Y. F., Greytok, J. A., Bechtold, C. M., Terry, B. J., Robinson, B. S., et al. (1996b). Human immunodeficiency virus type 1 viral background plays a major role in development of resistance to protease inhibitors. Proc Natl Acad Sci U S A, 93(4), 1648-1653.

Rosenbloom, D. I., Hill, A. L., Rabi, S. A., Siliciano, R. F., & Nowak, M. A. (2012). Antiretroviral dynamics determines HIV evolution and predicts therapy outcome. Nat. Med., 18(9), 1378-1385.

Santiago, M. L., Rodenburg, C. M., Kamenya, S., Bibollet-Ruche, F., Gao, F., Bailes, E., et al. (2002). SIVcpz in wild chimpanzees. Science, 295(5554), 465.

Schock, H. B., Garsky, V. M., & Kuo, L. C. (1996). Mutational anatomy of an HIV-1 protease variant conferring cross-resistance to protease inhibitors in clinical trials. Compensatory modulations of binding and activity. J. Biol. Chem., 271(50), 31957-31963.

Seibert, S. A., Howell, C. Y., Hughes, M. K., & Hughes, A. L. (1995). Natural selection on the gag, pol, and env genes of human immunodeficiency virus 1 (HIV-1). Mol. Biol. Evol., 12(5), 803-813.

Servais, J., Lambert, C., Fontaine, E., Plesseria, J. M., Robert, I., Arendt, V., et al. (2001). Variant human immunodeficiency virus type 1 proteases and response to combination therapy including a protease inhibitor. Antimicrob Agents Chemother, 45(3), 893-900.

Strickler, J. E., Gorniak, J., Dayton, B., Meek, T., Moore, M., Magaard, V., et al. (1989). Characterization and autoprocessing of precursor and mature forms of human immunodeficiency virus type 1 (HIV 1) protease purified from escherichia coli. Proteins, 6(2), 139-154.

Tang, C., Ndassa, Y., & Summers, M. F. (2002). Structure of the n-terminal 283-residue fragment of the immature HIV-1 gag polyprotein. Nat. Struct. Biol., 9(7), 537-543.

Tozser, J., Blaha, I., Copeland, T. D., Wondrak, E. M., & Oroszlan, S. (1991). Comparison of the HIV-1 and HIV-2 proteinases using oligopeptide substrates representing cleavage sites in gag and gag-pol polyproteins. FEBS Lett., 281(1-2), 77-80.

Tritch, R. J., Cheng, Y. E., Yin, F. H., & Erickson-Viitanen, S. (1991). Mutagenesis of protease cleavage sites in the human immunodeficiency virus type 1 gag polyprotein. J. Virol., 65(2), 922-930.

Voevodin, A. F., Johnson, B. K., Samilchuk, E. I., Stone, G. A., Druilhet, R., Greer, W. J., et al. (1997). Phylogenetic analysis of simian t-lymphotropic virus type i (STLV-I) in common chimpanzees (pan troglodytes): Evidence for interspecies transmission of the virus between chimpanzees and humans in central Africa. Virology, 238(2), 212-220.

Wang, J. Y., Ling, H., Yang, W., & Craigie, R. (2001). Structure of a two-domain fragment of HIV-1 integrase: Implications for domain organization in the intact protein. EMBO J., 20(24), 7333-7343.

Wang, Y., Dewdney, T. G., Liu, Z., Reiter, S. J., Brunzelle, J. S., Kovari, I. A., et al. (2012). Higher desolvation energy reduces molecular recognition in multi-drug resistant HIV-1 protease. Biology (Basel), 1(1), 81-93.

Wensing, A. M., Calvez, V., Gunthard, H. F., Johnson, V. A., Paredes, R., Pillay, D., et al. (2015). 2015 update of the drug resistance mutations in HIV-1. Top. Antivir. Med., 23(4), 132-141.

Witvrouw, M., Pannecouque, C., Switzer, W. M., Folks, T. M., De Clercq, E., & Heneine, W. (2004). Susceptibility of HIV-2, SIV and SHIV to various anti-HIV-1 compounds: Implications for treatment and postexposure prophylaxis. Antivir. Ther., 9(1), 57-65.

Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B. K., Baldwin, E., Weber, I. T., et al. (1989). Conserved folding in retroviral proteases: Crystal structure of a synthetic HIV-1 protease. Science, 245(4918), 616-621.

Wolfe, N. D., Heneine, W., Carr, J. K., Garcia, A. D., Shanmugam, V., Tamoufe, U., et al. (2005). Emergence of unique primate t-lymphotropic viruses among central african bushmeat hunters. Proc. Natl. Acad. Sci. U. S. A., 102(22), 7994-7999.

Yedidi, R. S., Proteasa, G., Martin, P. D., Liu, Z., Vickrey, J. F., Kovari, I. A., et al. (2014). A multi-drug resistant HIV-1 protease is resistant to the dimerization inhibitory activity of tlf-paff. J. Mol. Graph. Model, 53, 105-111.

Yewdell, J., Anton, L. C., Bacik, I., Schubert, U., Snyder, H. L., & Bennink, J. R. (1999). Generating mhc class i ligands from viral gene products. Immunol. Rev., 172, 97-108.

Zervoudi, E., Saridakis, E., Birtley, J. R., Seregin, S. S., Reeves, E., Kokkala, P., et al. (2013). Rationally designed inhibitor targeting antigen-trimming aminopeptidases enhances antigen presentation and cytotoxic t-cell responses. Proc. Natl. Acad. Sci. U. S. A., 110(49), 19890-19895.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Copyright © 2018 Lorem Ipsum Press