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SOCS, inflammation and metabolism 

Introduction 
 

Human society has survived facing starvation, preda-

tion and infection. Advances in sciences including bi-

ology, medicine, agriculture, and engineering, have 

enriched lives. However, we now confront metabolic 

syndrome comprising disorders such as diabetes, car-

diovascular disease, inflammation, and cancer. Obesity 

is the underlying cause of metabolic syndrome, which 

is a pandemic disease attributed to the changing global 

food system, wherein processed foods are heavily mar-

keted, readily available, and affordable. 

 Because of their influence on metabolic syn-

drome, members of the suppressor of cytokine signal-

ing (SOCS) family of proteins are the focus of inten-

sive and numerous studies. Cytokine inducible SH2-

protein (CIS)/SOCS proteins inhibit the activation of 

the JAK-STAT pathway and regulate signaling by in-

terleukins (ILs), interferons (IFNs), members of the 

tumor necrosis factors (TNF) superfamily, growth fac-

tors, and hormones (Endo et al. 1997, Yoshimura et al. 

2007). SOCS proteins regulate immune responses such 

as infection, inflammation and allergy, leukocyte ho-

meostasis, and cell growth as well as metabolic proc-

esses such as glucose turnover (Howard & Flier 2006). 

Our literature search identified over 500 publications 

regarding the relationship between the SOCS family 

and metabolic syndrome (Figure 1, left). Among 

SOCS proteins, SOCS3 is potently involved in the pro-

gression of obesity and diabetes. These diseases are 

risk factor for cancers, infection, stroke, myocardial 

infraction, ulcers, infertility, and gallstones. Among a 

series of diseases, SOCS3 associates with obesity-

related cancers (Figure 1, right). Recently, obesity has 

attracted great attention, because it is linked to the 

pathogenesis of certain cancers, including those of the 

colon, esophagus, breast, stomach, and pancreas 

(Wolin et al. 2010). Because patients with obesity-

associated cancers experience higher mortality and are 

more resistant to chemotherapy, increased research 

efforts in this area are urgently required. In this review, 

our main focus is on the underlying mechanisms of 

metabolic dysregulation of the SOCS signaling path-

way. 

 

Structure and function of SOCS proteins 
 

The genes that encode components of the JAK-STAT 

signaling pathway are transcriptionally regulated by its 

own SOCS family members (Inagaki-Ohara et al. 

2013, Yasukawa et al. 2000). The structures of CIS/

SOCS proteins are similar and include a central Src-

homology 2 (SH2) domain that varies in length with 

limited homology in their N-terminal regions and a 

SOCS box motif in their C-terminal domains (Figure 

2). The SOCS box interacts with Elongins B and C and 
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Obesity is characterized by the development of low-

grade chronic inflammation, which is a contributing 

factor in defective energy metabolism. A hallmark of 

metabolic dysregulation, obesity is a life-style disease 

that contributes to diabetes, hypertension, and dyslipi-

demia. Further, recent studies warn that obesity can be 

a risk factor for certain cancers and exacerbates infec-

tious diseases. This association is called the “metabolic 

domino”. Suppressor of cytokine signaling (SOCS) 

proteins are negative feedback regulators of cytokine 

and hormone signaling mediated by the JAK-STAT 

signaling pathway. SOCS proteins regulate cell-cell 

communication through JAK-STAT-dependent cyto-

kines and signaling by Toll-like receptors (TLRs) and 

they may be influenced by dietary factors such as fatty 

acids and glucose. In this review, we focus on the role 

of the JAK-STAT-SOCS signaling cascade in meta-

bolic disorder and obesity-related diseases. 

Abstract 



Cullin 5 to catalyze the ubiquitination of bound signal-

ing protein, the RING-finger-domain-only protein 

RBX2 (which recruits E2 ubiquitin–transferase) 

(Figure 2) (Yoshimura et al. 2012). CIS/SOCS family 

proteins as well as other SOCS-box-containing mole-

cules, likely act as E2 ubiquitin ligases. Because SOCS 

molecules bind to certain tyrosine-phosphorylated pro-

teins, including Mal (toll-like receptor signaling) and 

IRS1/2 (insulin receptor substrate signaling) 

(Yoshimura et al. 2012), these targets may be ubiquti-

nated by SOCS. Unlike other SOCS proteins, SOCS1 

and SOCS3 include a unique KIR domain, which is 

required for inhibition of JAK tyrosine kinase activity 

(Yasukawa et al. 1999) (Figure 2). The KIR domain of 

SOCS3 may function as a pseudosubstrate (Kershaw et 

al. 2013, Yasukawa et al. 1999) as well as a direct sub-

strate of the ubiquitin-proteasome system (Piessevaux 

et al. 2008). 

 

The role of SOCS proteins in leptin and insulin 

signaling 
 

Obesity is characterized by chronic low-grade systemic 

and local inflammation. Infiltrating macrophages pro-

duce IL-1β and TNF-α, and T cells release IFN-γ as 

well as TNF-α. These pro-inflammatory cytokines are 

toxic for the pancreatic β-cells. Diabetes is caused 

when insulin production by β-cells is deficient (type 1 

diabetes; T1D) or when cells that express the insulin 

receptor (IR) cannot respond to physiological concen-

trations of insulin (type 2 diabetes; T2D). Evidence 

indicates that genetic and environmental factors cause 

T1D (Bluestone et al. 2010). In contrast, T2D is 

caused by life-style (e.g. high-fat diet [HFD] and in-

sufficient exercise) and accounts for more than 95% of 

patients with diabetes. T2D leads to alterations of glu-

cose and lipid metabolism associated with insulin re-

sistance (Lebrun & Van Obberghen 2008). Cytokines 

accelerate resistance to leptin and insulin in patients 

with T2D (Suchy et al. 2013). SOCS proteins regulate 

cytokine signaling and play important roles in patho-

physiological processes leading to diabetes and obesity

-associated diseases as well (Tanti et al. 2012). 

 

Leptin Signaling 

Leptin (product of ob gene), an adipocyte-derived hor-

mone, binds to its receptor (ObR) in the hypothalamus 

to decrease food consumption and increase energy ex-

penditure (Friedman & Halaas 1998). ObR is synthe-

sized as multiple isoforms (ObRa–ObRf) as follows: 

four short isoforms with shortened intracellular tails 

(ObRa,c,d and f), one secreted (ObRe) and one long 

isoform (ObRb). Leptin belongs structurally to the 

long-chain helical cytokine family and activates the 

JAK-STAT signaling pathway and PI3K via ObRb, 

which is a type I cytokine receptor, similar to gp130 
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Figure 1. SOCS3 is a critical molecule in the development of metabolic syndrome and obesity-associated diseases. Each bar 

indicates the percentage of publications regarding metabolic syndrome on each SOCS family member according to a search of 

PubMed. 100 x (each SOCS)/(SOCS1-7) (left). Each pie chart shows the percentage of publications on obesity and diabetes-

associated diseases involved in alteration of SOCS3 expression (right). 



(Al-Qassab et al. 2009, La Cava & Matarese 2004). 

ObRb lacks intrinsic enzymatic activity and is acti-

vated by phosphorylation of its Cterminus by auto-

phosphorylated JAK2, which is bound to the SH2 do-

main of STAT3 (Howard & Flier 2006). In the nu-

cleus, STAT3 mediates gene transcription, including 

that of SOCS3. SOCS3 binds phosphorylated tyrosyl 

residue 985 (PY-985) of ObRb and to JAK2 to attenu-

ate leptin receptor-mediated signaling. Phosphoryla-

tion of PY-985 of ObRb recruits the SH2 domain-

containing protein-tyrosine phosphatase SHP-2 that 

functions upstream of extracellular-signal-regulated 

kinase (ERK) and c-fos transcription (Banks et al. 

2000). 

 Leptin-stimulated signaling via STAT3 rapidly 

induces SOCS3, which inhibits signaling through the 

leptin receptor. Further studies of gene-targeted mice 

reveal that leptin’s action specific to the central nerv-

ous system is sufficient to regulate body weight, food 

consumption, energy expenditure, glucose metabolism, 

and behavior (Gautron & Elmquist 2011). However, 

leptin’s anorexigenic effects are suppressed in obese 

individuals and animals with HFD-induced obesity, 

despite elevated levels of serum leptin. This pathologi-

cal condition is termed “leptin resistance” (Gautron & 

Elmquist 2011). These observations led to the proposal 

that SOCS3 is a potential mediator of leptin resistance. 

Further, peripheral administration of leptin to ob/ob 

mice specifically induces SOCS3 mRNA in regions of 

the hypothalamus that are important for regulating 

feeding behavior (Bjorbaek et al. 1998). Mice lacking 

SOCS3 from cells of the entire brain or only from 

proopiomelanocortin (POMC) neurons, which are 

leptin target neurons present in the arcuate nucleus of 

the hypothalamus, are resistant to HFD-induced obe-

sity (Kievit et al. 2006, Mori et al. 2004). In addition, 

studies of SOCS3 transgenic mice show that overex-

pression of SOCS3 in POMC neuron but not in ObRb 

neurons is sufficient to impart leptin resistance and 

obesity mediated by antagonizing signaling through 

phosphorylated STAT3 and mTOR-S6K (Reed et al. 

2010). In the periphery, leptin inhibits insulin secretion 

and expression of preproinsulin mRNA in the pancre-

atic β- cells. SOCS3 expressed by β-cells is involved 

in leptin-mediated inhibition of preproinsulin synthesis 

(Mori et al. 2007). Furthermore, leptin transactivates 

STAT3/STAT5b and the promoter of the pre-

proinsulin 1 gene, and SOCS3 inhibits the activities of 

both promoters (Lebrun & Van Obberghen 2008), sug-

gesting that SOCS3 inhibits directly the JAK-STAT 

signaling pathway as well as downstream signaling 

when the pathway is activated by leptin. 

 

 

Insulin signaling  

Insulin is secreted by the pancreas and stimulates the 

uptake of glucose and nutrients into peripheral target 

tissues. Like leptin, insulin reduces body weight and 

food intake, and regulates the expression of genes en-

coding neuropeptides as well as the activity of hypo-

thalamic neurons. Similarly, signaling of the insulin 

receptor (IR) is mediated by phosphorylation of tyrosyl 

residues. Unlike ObRb, the IR has intrinsic tyrosine 

kinase activity that upon ligand binding, autophos-

phorylates the transmembrane domain of its β-subunit 

on tyrosyl residues Y1158, Y1162, and Y1163 to re-

cruit downstream effector proteins, including IR sub-

strates (IRS) 1 and 2. SOCS1 and SOCS3 bind to the 

IR. SOCS1 phosphorylated on its C-terminus (Y1158, 

Y1162 and Y1163), SOCS3, and protein-tyrosine 

phosphatase 1B (PTP-1B) suppress insulin and leptin 

signaling via different molecular mechanisms (Suchy 

et al. 2013) (Figure 3).  

 Increased expression of SOCS1 and SOCS3 

induces insulin resistance in a variety models of obe-

sity and diabetes via inhibition of JAK-STAT signal-
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Figure 2. The structure and function of SOCS proteins. The 

SOCS family consists of eight members. All eight members 

share a central SH2 domain, extended SH2 domain (ESS), 

and a C-terminal SOCS box. In addition, SOCS1 and 

SOCS3 possess a kinase inhibitory region (KIR) that serves 

as a pseudo-substrate for JAKs that inhibits JAK function. 

Only SOCS1 contains a nuclear localization signal. A dia-

gram of the extended interactions of SOCS with target pro-

teins. The SOCS box interacts with several ubiquitinating 

machinery enzymes, i.e. Elongins B and C. 



ing, competition for the binding of the IRS1 or target-

ing the degradation of IRS1 (Howard & Flier 2006, 

Yoshimura et al. 2007). However, SOCS1/RAG2-

deficient mice, which survive to adulthood and gain 

body weight similar to wild-type mice, exhibit inflam-

mation of adipose tissue, accompanied by elevated 

levels of leptin, TNF-α, and CD68 (a macrophage 

marker) in adipose tissue (Emanuelli et al. 2008). They 

also exhibit increased transcription of lipogenic genes 

in the liver, such as Srebp1c and Fas (Emanuelli et al. 

2008). Furthermore, SOCS1 over-expression alone is 

insufficient to block total IFN-γ activity in pancreatic 

islets (Zaitseva et al. 2009). Interestingly, SOCS1-

deficient neonatal mice exhibit drastic hypoglycemia 

and hypoinsulinemia, develop multiorgan inflamma-

tory disease, and die before weaning (Jamieson et al. 

2005). In contrast, SOCS3 haplo-deficient mice and 

mice with SOCS3-deficiency in the brain are resistant 

to HFD-induced obesity and are insulin resistance 

(Howard et al. 2004, Mori et al. 2004).  

 Inhibition of the expression of SOCS3 alone or 

together with SOCS1 and SOCS3, using antisense oli-
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Figure 3. Multiple signaling pathways activated in obesity-associated diseases. A) Diet and lifestyle are critical factors for the 

development and regulation of obesity. Obesity is characterized by chronic low-grade systemic and local inflammation. Fur-

ther, obesity accelerates inflammation- and infection-associated cancers through the receptors for cytokines, leptin, insulin, and 

bacterial components such as LPS via multiple signaling pathways including JAK-STAT, Ras-MAPK, PI3KAkt, and TLR. 

ObRb, which is analogous to gp130, lacks intrinsic kinase activity as illustrated in B). B) Binding of leptin to ObRb induces 

autophosphorylation and activation of noncovalently associated JAK2, which in turn, leads to phosphorylation of highly con-

served tyrosyl residues in the intracellular domain of ObRb that recruit STAT3. STAT3 activation induces SOCS3 expression. 

Unlike gp130 and ObRb, IR possesses intrinsic tyrosine kinase activity that recruits and phosphorylates effector IRS molecules 

that, in turn, recruit adaptor molecules and mediate downstream signaling through PI3K and ERK. PTP1B inhibits leptin and 

insulin signaling by dephosphorylating JAK2 and IR, respectively. 



gonucleotides in the livers of db/db mice, suppresses 

the expression of lipogenic genes (Ueki et al. 2004). 

Hepatic SOCS3 mediates insulin resistance; however, 

aged hepatocyte-specific SOCS3-deficient mice ex-

hibit reduced insulin signaling in muscle, although in-

sulin sensitivity in the liver is enhanced (Torisu et al. 

2007). These studies suggest that lack of SOCS3 in the 

liver promotes systemic insulin resistance mediated by 

STAT3 activation induced by inflammatory factors 

produced from the liver. SOCS1-deficiency alone does 

not prevent HFD-induced obesity and insulin resis-

tance. Considering the role of SOCS3 as a suppressor 

of IL-1β, IFN-γ, and TNF-α signaling in pancreatic β-

cells, the SOCS3 pathway may prevent the onset of 

T2D as well as T1D (Bruun et al. 2009).  

 Several factors, such as IL-6, leptin, TNF-α, 

and infection with hepatitis C virus (HCV) regulate 

SOCS3 expression. For example, insulin increases the 

rate of SOCS3 expression in adipose tissue, liver, and 

muscle tissues (Emanuelli et al. 2001). Double dele-

tions of the gene encoding SOCS3 and PTP-1B in the 

brain cells, compared with deleting them individually, 

improves sensitivity to insulin in an additive manner; 

however, the SOCS3 deletion contributes more signifi-

cantly, which accounts for the low level of insulinemia 

detected in the double mutants (Briancon et al. 2010). 

This strategy is considered an important example of 

targeted therapy of T2D and obesity. 

 

Function of SOCS proteins in Toll-like recep-

tor (TLR) signaling  
 

The SOCS proteins, in particular SOCS1 and SOCS3, 

inhibit TLR signaling as well as the JAK-STAT sig-

naling pathway. Chronic inflammatory signaling is a 

key factor in the development of obesity, causes pe-

ripheral insulin, and accelerates leptin resistance. TLRs  

are a class of receptors that have key roles within the 

innate immune system by activating proinflammatory 

signaling cascades upon recognition of microbial and 

viral products (Medzhitov 2001). In particular, TLR4 

contributes to the development of insulin resistance 

through its activation by an increased number of ex-

ogenous ligands, such as dietary fatty acids and 

lipopolysaccharide (LPS). Activation of the TLR4 sig-

naling cascade induces the production of proinflamma-

tory cytokines, chemokines, and reactive oxygen spe-

cies (ROS), which are all effectors of innate immunity. 

TLR4 is expressed by many cells in insulin target tis-

sues, including pancreatic β-cells as well as liver, 

skeletal muscle (Kim & Sears 2010). Therefore, TLR4 

activation may suppress insulin action through proin-

flammatory cytokine signaling, ROS generation, and 

producing insulin-desensitizing factors.  

 The daily diet plays an important role in the 

development of obesity and diabetes, and the types and 

caloric content of meals are significant contributors to 

the inflammatory response. For example, consumption 

of foods high in carbohydrates and fat induce inflam-

mation and increase in the LPS concentration in the 

plasma. Consumption of these foods, but not those 

with high-fiber content, elevates SOCS3 expression in 

circulating mononuclear cells (Ghanim et al. 2009). 

Long-chain polyunsaturated omega-3 fatty acids such 

as DHA and EPA antagonize TLR4 activation by satu-

rated fatty acids and LPS (Lee et al. 2001, 2003, Shi et 

al. 2006). Consumption of sweets and cream increase 

the levels of TNF-α, IL-1β, and SOCS3 but not those 

of SOCS1 (Deopurkar et al. 2010). Further, cream en-

hances the post-meal spike in the concentration of cir-

culating LPS concentration in contrast to drinking a 

beverage containing sugar. Moreover, SOCS3 signal-

ing and NF-κB activation in circulating mononuclear 

cells are remarkably elevated when cream and soft 

drinks are consumed. These results suggest that the 

level of SOCS1 and SOCS3 induced by consuming 

certain kinds of food may differ, although SOCS pro-

teins modulate insulin resistance. 

 

Obesity-related diseases  
 

Obesity-induced inflammation is an important con-

tributor to the development of pathologies such as 

T2D, atherosclerosis, liver disease, infections, and 

some types of cancer (Gregor & Hotamisligil 2011, 

Wolin et al. 2010). In particular, cancer and infection 

are highly associated with the regulation of SOCS pro-

tein expression in obesity-associated diseases (Figure 

1, right). 

 

Cancer 

Persistent inflammation increases cancer risk, which is 

driven by genetic alterations that cause inflammation 

and neoplasia. STATs and NF-κB are key coordinators 

of innate immunity and inflammation and are execu-

tors of tumor promoters (Inagaki-Ohara et al. 2013). 

Twenty percent of cancers can be attributed to obesity 

(Wolin et al. 2010), and increased cancer-related mor-

tality (Reeves et al. 2007) attracts great attention as a 

global health problem. The number of people with dia-

betes has increased and is predicted to rise to 552 mil-

lion by 2030 (Wild et al. 2004), suggesting that cancer 

risk will rise proportionately.  

 White adipose tissue (WAT) performs multi-

ple functions other than to store lipids. The increase in 

the mass of WAT during the progression of obesity 

elevates the production of adipokines such as leptin, IL

- 6, TNF-α, causing chronic mild inflammation. Dia-
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betic patients are at significantly higher risk for com-

mon cancers including those of the breast, gastrointes-

tinal (GI) (esophageal, colorectal) tract, liver, pancreas, 

urinary tract, and female reproductive tissues (Xu et al. 

2014).  

 

Breast cancer 

Approximately 60% of breast cancers are hormone-

dependent. The hormonal changes that occur post-

menopause are attributed to a specific metabolic state 

that represents a greater risk for breast cancer. These 

changes are considered indispensable for a more effec-

tive therapy (Maccio & Madeddu 2011). Among adi-

pokines, leptin is the most intensively studied regard-

ing its metabolism and role in obesityrelated carcino-

genesis, because leptin induces physiological re-

sponses in peripheral tissues other than those involved 

in neuronal activity. Increased expression of leptin and 

ObRb in human grade-III invasive breast tumors is 

associated with shorter time to tumor recurrence and 

mortality (Garofalo et al. 2006, Maccio et al. 2010).  

 Tumor cells derived from MMTV-Wnt1 mice, 

a widely used model of mammary tumors, show de-

creased growth in ob/ob mice (leptin-deficient) com-

pared with diet-induced obese mice with an intact 

leptin signaling pathway (Zheng et al. 2011). This re-

sult suggests that leptin signaling plays an essential 

role in the growth and survival of tumors induced by 

MMTV-Wnt1. Tumor initiating stem cells express 

high levels of ObR to promote tumorigenesis caused 

by STAT3 activation and by inducing pluripotencyas-

sociated transcription factors such as Oct4 and Sox2 

(Feldman et al. 2012). In patients with obesity-related 

breast cancer, the JAK2-STAT3 pathway is activated 

and SOCS3 is down-regulated (Santillan-Benitez et al. 

2014). These effects of leptin are mediated through a 

set of responses of ObRb-positive tumor cells, includ-

ing a cancer stem cell population that expresses the 

ObRb. These findings suggest that leptin affects tumor 

initiation and progression through STAT3 activation.  

 

Gastrointestinal (GI) cancer  

The relative risk of GI cancer in obese individuals is 

highly prevalent among patients with obesityassociated 

Barrett’s esophagus and colon cancer (Wolin et al. 

2010). The combination of adenomatous polyposis coli 

(Apc) and db/db mice enhances Apc-driven tumori-

genesis of the small intestine and induces gastric and 

colonic tumors. In contrast, db/db mice do not develop 

GI neoplasia (Gravaghi et al. 2008). Recently, gastric 

cancer has emerged as an obesity-associated cancer. 

Normal stomach tissues spontaneously express leptin 

and ObRb, and their expression levels increase during 

carcinogenesis (Bado et al. 1998, Inagaki-Ohara et al. 

2014), and induce autocrine signaling (Hoda et al. 

2007), suggesting that the stomach is more susceptible 

to ObR signaling than other tissues. Approximately 

90% of gastric cancers are gastric adenocarcinomas 

(GCA), which are further categorized as distal or non-

cardia GCA and proximal or cardia GCA. Interest-

ingly, cardia GCA is associated with obesity (Cho et 

al. 2012, O'Doherty et al. 2012), suggesting that the 

unique localization of the leptin-ObR signaling path-

way to cells of the GI tract functions predominantly in 

the early phase of human GC and serves as a bio-

marker. Therefore, targeting this pathway may be in-

valuable for treatment.  

 

Hepatic cancer  

Leptin’s oncogenic role, including its capability to en-

hance tumor invasiveness and migration of hepatocel-

lular carcinoma (HCC) cells, may be antagonized by 

adiponectin in HCC through suppression of STAT3 

and Akt phosphorylation when SOCS3 is up-regulated 

(Sharma et al. 2010). Studies conducted in vitro reveal 

that the SOCS3 binding site is essential for the interac-

tion with IRS1 and IRS2, whereas the affinity of 

SOCS1 for a domain within the catalytic loop is cru-

cial for IRS2 (Ueki et al. 2004). SOCS1 and SOCS3 

bind to the IR in cells, and their overexpression im-

pairs the phosphorylation of IRS1 and IRS2 stimulated 

by insulin. Insulin resistance is caused by IL-6 due to 

suppression of tyrosine phosphorylation of IRS-1 

through the induction of SOCS3 in murine primary 

hepatocytes and human hepatocarcinoma cells 

(Wunderlich et al. 2013). Indeed, IL-6-deficient mice 

are resistant to diethylnitrosamine (DEN)-induced car-

cinogenesis when fed a HFD (Park et al. 2010). Re-

cently, Shimizu et al. (2011) showed that several sig-

naling pathways including insulin/IGF-1/PI3K/Akt, 

ERK, JNK, and STAT3 are important in DEN-induced 

liver carcinogenesis in db/db mice. SOCS3 expression 

is reduced in the levers of HCC patients, which is sup-

ported by findings that mice with hepatocyte-specific 

deletion of SOCS3 are resistant to concanavalin A-

induced hepatocarcinogenesis (Ogata et al. 2006).  

 Collectively, these studies reveal that leptin 

exerts its actions centrally and provides beneficial ef-

fects to peripheral organs. However, although such 

peripheral functions of leptin exist, chronic JAK-

STAT3- SOCS3 pathway activity in obesity is mainly 

derived from other signals that, in contrast, act in the 

periphery as well as the CNS. Further, crosstalk be-

tween leptin and IGF-1 significantly increases the pro-

liferation as well as invasion and migration of breast 

cancer cells, suggesting that the cooperation of several 

signaling pathways is required to induce obesity-

associated carcinogenesis.  
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Infection 

Hepatitis C virus  

Overwhelming epidemiological evidence indicates that 

persistent infection with HCV and HBV is a major risk 

factor for the development of HCC (Koike et al. 2008). 

In transgenic mice carrying the gene encoding the 

HCV core protein (PA28 gamma (+/+) Core Tg), the 

HCV core protein induces hyperexpression of TNF-α 

(Miyamoto et al. 2007), and HCV infection causes 

insulin resistance and T2D, which is sufficient to im-

pair insulin signaling in vitro through the SOCS pro-

tein activation and the consequent decrease in IRS- 1 

expression (Pascarella et al. 2011).  

 Chronic HCV infection of humans is treated 

with a combination of Peginterferon (a long acting 

IFN) and Ribavirin (guanosine analog that inhibits 

RNA synthesis). These drugs contribute to decreased 

sensitivity to interferon, which is inhibited by SOCS3 

(del Campo et al. 2010). Interestingly, SOCS1-

deficient mice show hyperglycemia but die before 

reaching three weeks of age due to enhanced IFN-γ 

signaling (Starr et al. 1998). Human embryonic stem 

cell-derived hepatocytes (hESC-Heps) are capable of 

supporting the full HCV life cycle and viral infection 

to a lesser extent compared with the HUh 7 hepatocar-

cinoma cell line that produces IL-29, a type III IFN, 

upon stimulation by HCV infection (Zhou et al. 2014). 

Considering that the level of viral infection and repli-

cation in hESC-Heps is increased by addition of JAK 

inhibitor I that modulates signaling through the JAK-

STAT pathway as well as the downstream response to 

IFN, “tunable” hESC-Heps may serve as a platform for 

the development of anti- HCV drugs. 

 

Influenza  

The association between obesity and influenza was 

first reported during the 2009 influenza A (H1N1) pan-

demic (Louie et al. 2011, Morgan et al. 2010). Obese 

volunteers infected with influenza A (H1N1) show a 

reduced ability to produce type I IFN in response to 

the TLR3 ligand, delayed proinflammatory responses, 

and increased basal expression of SOCS3 but not 

SOCS1 (Teran-Cabanillas et al. 2014). Dietinduced 

obese mice exhibit similar responses. In these mice, 

the number of influenza virus-specific CD8+- memory 

T cells in the lung, an important cell population for 

protection against the subsequent virus exposure is 

decreased, but expression of SOCS1 and SOCS3 is 

increased (Karlsson et al. 2010). These results suggest 

that new vaccine strategies are required for obese indi-

viduals, because the standard vaccine that induces the 

proliferation of memory T cells may be less effective 

in an obese population. 

 

Intestinal microbiota  

It is important to understand that the output of signal-

ing pathways that are activated by certain bacteria may 

protect against intestinal inflammation or obesity. 

Members of the phyla Bacteroidetes and Firmicutes 

dominate the gut microbiome, and an increased ratio of 

Firmicutes to Bacteroidetes is implicated in the devel-

opment of adult obesity (Eckburg et al. 2005, Ley et 

al. 2006, Turnbaugh et al. 2006). Obesity is character-

ized by chronic low-grade inflammation with reduced 

GI barrier function involving a variety factors and in-

flammatory mediators (Chakraborty et al. 2010). 

“Metabolic endotoxemia” can initiate obesity and insu-

lin resistance through gastrointestinal bacteria- trig-

gered SOCS3 signaling. High-fat and high-fructose 

diets alter the composition of the gut microbiota and 

the permeability of the gut, which increase the prolif-

eration of enterobacterial species and the levels of cir-

culating LPS (Cani & Delzenne 2009, Kim & Sears 

2010). Germ-free mice or mice treated with antibiotics 

specific for gram-negative bacteria do not exhibit HFD

-induced insulin resistance or other metabolic abnor-

malities associated with obesity (Backhed et al. 2007, 

Cani et al. 2008). The presence of body fat-inducing 

gut microbiota may be associated with hypothalamic 

signs of SOCS3-mediated leptin resistance (Schele et 

al. 2013). Further, the strong correlation between in-

creased LPS concentrations and HFD-induced en-

dotoxemia, an important component of obesity-

associated inflammation in obese patients, is consistent 

with enhanced expression of TLR4 and NF-κB in cir-

culating mononuclear cells (Cani et al. 2008, Ghanim 

et al. 2009). Deletion of Tlr4 from the myeloid cells 

protects mice against HFD-induced inflammation, adi-

pose macrophage infiltration, and insulin resistance 

(Saberi et al. 2009). TLR5 binds to bacterial flagellin, 

and mice lacking this receptor display hyperphagia and 

develop the characteristic features of metabolic syn-

drome, including hyperlipidemia and insulin resistance 

(Vijay-Kumar et al. 2010). These metabolic changes 

correlate with changes in the composition of the gut 

microbiota, and transfer of the gut microbiota from 

TLR5-deficient mice to wild-type germ-free mice con-

fers many features of metabolic syndrome to the latter.  

 Emerging evidence suggest that the GI tract is 

the origin of inflammation in HFD-induced obesity as 

well as adipose tissue. A HFD promotes inflammation 

in the GI tract, which is considered a potential source 

of inflammation associated with HFD-induced obesity. 

Adult germ-free (GF) mice have less body fat and do 

not become obese when they are fed a HFD, and re-

placing the microbiota of adult GF mice with the mi-

crobiota harvested from conventional mice increases in 

body fat (Backhed et al. 2004, Backhed et al. 2007). 
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These results indicate that nonpathogenic enteric bac-

teria in healthy individuals may play a key role in diet-

induced obesity.  

 Mice devoid of PTP1B are resistant to diet-

induced obesity (Bence et al. 2006, Elchebly et al. 

1999, Owen et al. 2012). Furthermore, knockdown of 

PTP1B expression in the RAW264.7 macrophage cell 

line increases the production of IL-6, TNF-α, and IFN-

β in response to a variety of TLR ligands, indicating 

that PTP1B can act as a negative regulator of TLR4-

signaling in macrophages (Xu et al. 2008). Myeloid 

cell-specific PTP1B knockout (LysM-PTP1B) mice 

resist LPS-induced endotoxemia and hepatic damage 

associated with decreased TNF-α expression and show 

an increase in basal and LPS-induced IL-10 production 

associated with enhanced STAT3 activation (Grant et 

al. 2014). These findings suggest that myeloid PTP1B 

is a previously unrecognized inhibitor of STAT3/IL-10 

mediated signaling and may serve as a target for treat-

ing inflammation and diabetes in obese patients.  

 

Concluding remarks  
 

Over the past decade, SOCS proteins have been clearly 

shown to inhibit the leptin and insulin signaling path-

ways in vitro and in vivo and to influence energy bal-

ance and glucose homeostasis. These discoveries high-

light the importance of SOCS for regulating the 

mechanisms of onset and development of diseases in-

volved in metabolic dysfunction in central and periph-

eral tissues through the JAK-STAT signaling cascade 

as well as through crosstalk with other mediators 

(Figure 3). In the future, SOCS proteins will likely 

provide therapeutic targets for T2D and obesity-

associated cancer, although investigations should take 

into account the induction of SOCS proteins by diverse 

cytokines and cell types.  
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