
Flaviviridae is a family of RNA viruses that includes 

numerous important human and animal pathogens. 

Recent studies on subgenomic flaviviridae replicons 

have revealed that the non-structural (NS) proteins, 

which are encoded by the C-terminal part of the poly-

protein, play a crucial role in viral RNA replication. 

Accordingly, these proteins are assumed to form repli-

cation complexes in conjunction with genomic RNA 

and possibly with other cellular factors. One the most 

important non-structural enzymes that plays a key role 

in the life cycle of flaviviridae viruses is the viral heli-

case. Sequence alignments of the viral helicases from 

this family identified several conserved sequence mo-

tifs that are important for biological functions. Herein, 

an effort is made to summarize the current epidemics 

associated with the flaviviridae family worldwide, the 

potential of helicase enzymes as a promising pharma-

cological target and the use of nucleoside analogs as 

simple, efficient and rather versatile antiviral agents. 
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Current viral infections and epidemics of flaviviridae; lots of grief but also 

some hope 

The flaviviridae viral family 
 

Flaviviridae is a family of viruses that infect verte-

brates (Neyts et al. 1999). The small, enveloped viri-

ons of flaviviridae contain a single positive-sense RNA 

genome, in a long open reading frame (ORF), which is 

flanked by untranslated regions (UTRs) at the 5' and 3' 

ends. Virions are spherical in shape, usually between 

40-60 nm in diameter and are slightly pleomor-

phic  during their life cycle.  Their nucleocapsids are 

isometric and sometimes penetrated by stain. The 

usual size of the nucleocapsids is 25-30 nm in diameter 

and they have polyhedral symmetry (Guzmán & Kourí 

2004). Flaviviridae consists of three characterized gen-

era and certain unclassified members (Courageot et al. 

2003). The main representatives of each family are 

summarized in Figure 1. What is remarkable is that 

even though the above viruses are separated to differ-

ent genera, do not have common biological properties 

and do not show serological cross-reactivity, they 

manage to retain high similarity in the morphology of 

the virion, the organization of the viral genome, and 

the estimated life cycles and replication patterns they 

follow (Wang & Fikrig 2004, Calisher & Gould 2003, 

Collett 1992). 

Current epidemics and necessity 
 

More than 170 million people worldwide are currently 

chronically infected with the Hepatitis C virus (Avalos

-Ramirez et al 2001). They are all considered to be at 

risk of developing cirrhosis and some of them will pro-

gress to liver cancer. Hepatitis C has spread all over 

the world and causes ten thousand deaths per year. It is 

the main cause for more than half of the four thousand 

liver transplantations performed annually (Degos 

1994). 

 Infections carried by mosquitoes or, in more 

general terms, arthropod-borne flaviviridae infections 

have reached epidemic dimensions in some parts of the 

world. Dengue fever infects 50 million people per year 

in central Africa. According to the World Health Or-

ganization (WHO) there are 6.5 billion inhabitants on 

this planet that live in areas of high risk of acquiring 

the dengue virus (Figure 2). For example, in 2006 

alone, the Philippines reported 197 deaths and 14,738 

cases of dengue fever (Kadare & Haenni 1997). Indo-

nesia’s Dengue fever deaths reached 634 and Malaysia 

has already confirmed 74 deaths in the first 9 months. 

In Thailand more than 32,000 Thais have been infected 

with the virus and currently Singapore is going 
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through its worst dengue fever outbreak ever on re-

cord, since the officially reported Dengue cases are 

nearing 11,000 (Pasta et al. 2005). According to the 

WHO of South-East Asia, since November 2005, a 

total of 5,737 cases of Japanese Encephalitis with 

1,334 deaths (a fatality rate of 23.3%) have been re-

ported in Uttar, India since the outbreak started in July 

2005. Moreover, since January 2006, a total of 2,824 

individuals have been infected with Japanese Encepha-

litis and 316 of these have resulted in death (a fatality 

rate of 11.2%). In response, the Japanese Government 

has employed both anti-larval and anti-adult measures 

by distributing 200,000 mosquito nets and passing leg-

islation making vaccination and immunization against 

the virus compulsory for all children aged between 1-

12 years (Allain 2005). 

 West Nile Virus (WNV) first hit New York 

with 77 deaths in 1999. The United-States were 

alarmed and action was taken to stop the virus from 

spreading. Nevertheless, in 2002, WNV hit Illinois 

harder than any other state, with 399 cases, 21 of 

which resulted in death. The humid and full of swamps 

Louisiana came second with 11 deaths in 2006 (Gilbert 

et al. 2005). 

 In addition, farming and agriculture have both 

seriously suffered in the past from the impact that Pes-

tiviruses have had on livestock. Many economies de-

pend on primary production that comes from farming 

and agriculture and as a result most of these countries 

take preventative action against these viruses (Keeffe 

2005, Shepard et al. 2005). Despite the severity of the 

infection with almost all members of flaviviridae, no 

specific antiviral therapy is available today (Courageot 

et al. 2003, Wang & Fikrig 2004, Calisher & Gould 

2003, Collett 1992). 

 

NS3 Helicase is a promising pharmacological 

target; Insights by X-ray crystallography 
 

All of the non-structural viral proteins have had their 

time in the spotlight. A lot of research has been con-

ducted on the NS2 Protease or the NS5 RNA-

dependent RNA enzyme that is responsible for the un-

winding of the viral genome and the subsequent propa-

gation and proliferation of the virus. However, X-ray 

crystallography work on the HCV helicase (Kim et al. 

1998) has shed light to the structure of this mysterious 

protein that has now become one of the 'hottest' viral 

pharmacological targets for major US pharmaceutical 

companies. 

 The Hepatitis C helicase consists of a 456 

amino acid poly­peptide. It has three domains in total, 

which are separated by two channels (Figure 3). The 

first and third domains interact much more strongly 

with each other than each of them does with domain 

two. As a result of this, the channel between domains 1

-2 and 2-3 is larger than the channel between domains 

1-3 and 2-3. Domain two is supposed to undergo sig-

nificant movements compared to the other two do-

mains, during the unwinding of double-stranded nu-

cleic acids. The position of domain two is therefore far 

more flexible relatively to the other two domains and 

the Helicase and can acquire the form of a dynamic 

“hinge” that moves accordingly to the needs of the 

protein and the process it is involved into (Kim et al. 

1998). 
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Figure 1. The three genera that constitute the viral family of flaviviridae; Hepatitis C virus was recently discriminated from the 

rest of the Flaviviridae due to its distinct properties and clinical manifestations. 



 The topology of the first and the second domain is very 

similar. These two domains contain the structurally conserved 

regions of helicases of this family. This is confirmed by the su-

perimposition of the two domains, which gives an RMSd of 2.0 

Å for 76 Ca atoms. The third domain consists mostly of α-

helices and is linked to domain two with a set of antiparallel β-

strands. 

 Domain 3 includes a 40 amino-acid long region, just 

before the α-helix in the C terminus that does not contain any 

secondary structures. This may contribute to the flexibility re-

quired by the protein during its cleavage from the NS4A domain 

during polyprotein processing. On the other hand, towards the N

-terminus of the protein there is the highly conserved “Walker A 

box” or “P-loop” motif (Kim et al. 1998). This motif is very of-

ten found among helicases and is basically a glycine rich region 

of the protein that provides a quite flexible loop between beta-

strands and alpha-helices. The “Walker A box” has got phos-

phate-binding properties and is found in most ATPases (Kim et 

al. 1998). The sulfate ion interacts with the Nitrogens Gly207 

and Gly209, and the side-chains of Ser208, Lys210 and Ser211. 

Lys210 establishes a H2O mediated interaction with As290 of 

the DExH motif (Asp-Glu-x-His). The position of the sulphate 

ion was found to be very similar to the position that the β-

phosphate of ADP would take in the PcrA helicase–ADP com-

plex. So, it is suggested that β-phosphate should occupy this area 

when NTP or nucleotide diphosphate (NDP) is bound to the 

HCV helicase. The residues Gln460, Arg464 and Arg467 are 

highly conserved residues from domain 2 that are exposed to 

solvent in the major channel of the Helicase. Arg461 and 

Arg462 are buried amino-acids in the core of the second domain. 

 The single strand of DNA is located in the main channel 

of the helicase between domains 3 and 1-2 (Figure 3). The size 

of the channel is approximately 16 Å in diameter. The 5′ end of 

the oligonucleotide is towards the part of the channel formed 

between domains 2 and 3 and the 3′ end towards the part of the 

channel formed between domains 1 and 3. 

 The interaction between the ssDNA and the Helicase is 

essentially between the backbone of the DNA, since it is nonspe-

cific protein-DNA interaction. The majority of the established 

interactions are located towards the two ends of the oligonucleo-

tide. From the protein’s point of view most interactions arise 

from regions lacking secondary structures in domains one and 

two. The positioning of the interaction-participating amino acids 

is symmetric and as a result there appears to be a symmetric dis-

tribution of the interactions between the DNA and protein. After 

superimposing the first and the second domains it was proven 

that the residues involved in the phosphate contacts are structur-

ally equivalent (Kim et al. 1998). Furthermore the phosphate-

binding amino acid series of Ser231, Thr269, Ser370 and Thr411 

are conserved in NS3 domains and this provides evidence that 

these two domains may descend from a gene duplication event. 

Val432 and Trp501 are also highly conserved residues among 

HCV NS3 sequences; nevertheless neither seems to play any 

role in nucleic acid binding or duplex unwinding. 
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Figure 2. The spread of the Dengue Virus 

from the 50’s until today, showing the casu-

alties per decade. Even highly-developed 

areas of the planet are under threat. 



Rationalized use of nucleoside analogues as 

modern antiviral agents 
 

Viruses are very simple in structure. They contain a 

limited package of nucleic acid that is encased by a 

rather basic protein coat. They are primarily intracellu-

lar parasites that lack any craft in catering for them-

selves as they cannot even produce their own meta-

bolic energy. The machinery that they use in terms of 

their proliferation comes explicitly from the host cell. 

Once inside the cell, they are exceedingly good at 

abusing and exploiting their host in order to produce 

the viral proteins and nucleic acid that they require for 

the assembly of new virions. Eventually the host cell 

will become exhausted and destroyed by releasing nu-

merous copies of the virus (Levine 1992). Basic bio-

chemistry has revealed that all those viral proteins are 

being produced soon after the virus has penetrated into 

the host cell and that makes specific targeting of the 

viral machinery quite challenging (Neyts et al. 1999). 

A virion in the blood stream is quite ‘invisible’ and 

only when found within its host it is somehow exposed 

and vulnerable. However, separating and targeting 

those viral proteins in the ocean of host cell enzymes, 

proteins and cytoplasm is not an easy task. The goal of 

chemotherapy and antiviral research is to block such 

viral enzymes using non-toxic doses of drugs for the 

host cell. 

 Antiviral research must therefore be cunning. 

Extra effort must be made to identify those steps and 

proteins that are involved with the replication of the 

viral genetic material. It is no coincidence that most of 
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Figure 3. The HCV Helicase co-crystallised with a ssDNA fragment. The enzyme is shown in ribbon representation while the 

oligonucleotide in CPK – ball and sticks representation. 



the current antiviral drugs target enzymes involved in 

the handling of the genome. In this regard, one of the 

most crucial enzymes is the viral helicase as a target 

for antiviral chemotherapy. It goes without saying that 

due to its preference in natural substrates, nucleoside 

analogues constitute a very important family of antivi-

ral compounds (Levine 1992, Eriksson & Wang 1997). 

Next to the viral helicases are the viral polymerases, 

which in turn utilise nucleotide triphosphates as sub-

strates for the building of new viral genetic material. 

Consequently, nucleoside analogues must be provided 

in their phosphorylated form when interacting with 

those catalytic enzymes. On the other hand, a triphos-

phate nucleoside is not of much use as it is very polar 

and heavily charged, making it incapable of crossing 

through cellular membranes. Therefore nucleoside ana-

logues aim for kinases (Eriksson & Wang 1997) which 

are the key proteins that phosphorylate nucleosides and 

convert them into their active form. Still this is tricky 

too, as the structural similarity of these antiviral agents 

with the natural nucleosides gives rise to toxicity is-

sues. Things get more complicated if one considers 

that certain viruses encode their own kinases. Should 

the nucleoside analogue in this case act on the activa-

tion and phosphorylation stage or at the actual mecha-

nism of the involved enzyme (e.g. dsDNA unwinding 

of viral helicases)? Special efforts are made in this di-

rection, in order to develop a platform where the nu-

cleoside compound gets phosphorylated by the viral 

kinases while the host kinases do not detect it at all. By 

this approach, we can achieve some kind of selectivity 

between infected and uninfected cells through the pref-

erential phosphorylation by viral kinases as a key pro-

liferative and metabolic step. Inhibition at the enzyme 

level will be achieved by the misplacement or misuse 

of our introduced nucleoside analogue which can act as 

a faulty substrate and block the viral enzyme. For in-

stance, if a non-natural nucleoside is introduced into 

the viral genome, it will immediately disrupt the base 

pairing of the viral genetic material and result in the 

composition of new DNA containing mutations in its 

sequence. Alternatively, if the incorporated nucleoside 

analogue has a modified sugar moiety lacking the nec-

essary 3’- hydroxyl group, it will inevitably result in a 

sudden stop and terminate the chain generation. 

 In conclusion, we need to emphasize that epi-

demiologically flaviviridae are currently affecting 

every corner of the globe. Extensive antiviral research 

has focused on the viral polymerase and protease while 

the helicase enzyme has been purposely neglected due 

to its dynamic structure. However, recent advances in 

crystallography and bioinformatics have shed light to 

the function and mechanism of action of the viral heli-

case. Therefore there is an on-going battle in the de-

signing of potent antiviral agents, where much poten-

tial and hope is expected by nucleoside analogues, 

whether they are acting on the kinase level, the viral 

enzyme level or both. 
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