Metabolism of triacylglycerols in Rhodococcus species: insights from physiology and molecular genetics

Héctor M. Alvarez, Roxana A. Silva, Marisa Herrero, Martín A. Hernández, María S. Villalba


Rhodococcus bacteria possess the ability to accumulate variable amounts of triacylglycerols (TAG) during growth on diverse carbon sources. The evolution seems to have selected these microorganisms as specialists in the accumulation of TAG among bacteria, since their biochemistry is efficiently designed for the biosynthesis and mobilization of these lipids. Detailed research of rhodococcal TAG metabolism started only a few years ago; thus, the fundamental understanding of this process and its regulation remains to be clarified. However, some interesting advances in the basic knowledge on TAG metabolism in rhodococci have been made. Most studies have focused on the physiology of TAG biosynthesis and mobilization in rhodococci. Only recently, some advances in molecular biology and genetics on TAG metabolism occurred as a result of the increasing available genomic information and the development of new genetic tools for rhodococci. These studies have been focused principally on some enzymes of TAG biosynthesis, such as the wax esters/diacylglycerolacyltransferases (WS/DGAT) and TAG granule-associated proteins. In this context, the most relevant achievements of basic research in the field have been summarized in this review article.


Rhodococcus, triacylglycerols, biosynthesis and degradation genes


Alvarez HM 2003 Relationship between b-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Intern Biodeter & Biodeg 52 35-42

Alvarez HM 2006 Bacterial triacylglycerols. In: Welson LT (ed) Triglycerides and Cholesterol Research, Nova Science Publishers Inc New York 6 159–176

Alvarez HM 2010 Biotechnological production and significance of triacylglycerols and wax esters. In: Kenneth N. Timmis (ed) Microbiology of Hydrocarbons, Oils, Lipids, and Derived Compounds. Springer Verlag, Heidelberg, Germany, Volume 3 Chapter 44 pp 2995-3002

Alvarez HM & Steinbüchel A 2002 Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60 367-376

Alvarez HM & Steinbüchel A 2010 Physiology, biochemistry and molecular biology of triacylglycerol accumulation by Rhodococcus. In: Alvarez HM (ed), Biology of Rhodococcus. Microbiology Monographs Series. Springer Verlag, Heidelberg, Germany, Chapter 10, pp 263-290

Alvarez HM, Mayer F, Fabritius D & Steinbüchel A 1996 Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165 377-386

Alvarez HM, Kalscheuer R & Steinbüchel A 1997 Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett/Lipid 99 239-246

Alvarez HM, Kalscheuer R & Steinbüchel A 2000 Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54 218-223

Alvarez HM, Souto MF, Viale A & Pucci OH 2001 Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432. FEMS Microbiol Lett 200 195-200

Alvarez HM, Luftmann H, Silva RA, Cesari AC, Viale A, Wältermann M & Steinbüchel A 2002 Identification of phenyldecanoic acid as constituent of triacylglycerols and wax ester produced by Rhodococcus opacus PD630. Microbiology 148 1407-1412

Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Reichelt R, Keller U, Malkus U, Rasch C, Maskow T, Mayer F & Steinbüchel A 2004 Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. FEMS Microbiol Ecol 50 75-86

Alvarez AF, Alvarez HM, Kalscheuer R, Wältermann M & Steinbüchel A 2008 Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleogenous bacterium Rhodococcus opacus PD630. Microbiology. 154 2327-2335

Barksdale L & Kim KS 1977 Mycobacterium. Bacteriol Rev 41 217-372

Barney BM, Wahlen BD, Garner E, Wei J & Seefeldt LC 2012 Differences in substrate specificities of five bacterial wax ester synthases. Appl Environ Microbiol 78 5734-5745

Bloch K 1977 Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv Enzymol Relat Areas Mol Biol 45 1-84

Ding Y, Yang L, Zhang S, Wang Y, Du Y, Pu J, Peng G, Chen Y, Zhang H, Yu J, Hang H, Wu P, Yang F, Yang H, Steinbüchel A & Liu P 2012 Identification of the major functional proteins of prokaryotic lipid droplets. J Lipid Res 53 399-411

Gouda MK, Omar SH & Aouad LM 2008 Single cell oil production by Gordonia sp. DG using agroindustrial wastes. World J Microbiol Biotechnol 24 1703–1711

Heald, SC, Brandão PF, Hardicre R & Bull AT 2001 Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodococcus strains. Antonie Van Leeuwenhoek 80 169-183

Hernández MA, Mohn WW, Martínez E, Rost E, Alvarez AF & Alvarez HM 2008 Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 12 9:600

Hernández MA & Alvarez HM 2010 Glycogen formation by Rhodococcus species and effect of inhibition of lipid biosynthesis on glycogen accumulation in R. opacus PD630. FEMS Microbiol Lett 312 93-99

Hernández MA, Arabolaza A, Rodríguez E, Gramajo H & Alvarez HM 2012 The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630. Appl Microbiol Biotechnol DOI 10.1007/s00253-012-4360-1

Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leach AL, Ghiviriga I, Dancel C, Abeel T, Gevers D, Kodira CD, Desany B, Affourtit JP, Birren BW & Sinskey AJ 2011 Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 7(9) e1002219

Kalscheuer R & Steinbüchel A 2003 A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278 8075–8082

Kelly BG, Wall DM, Boland CA & Meijer WG 2002 Isocitrate lyase of the facultative intracellular pathogen Rhodococcus equi. Microbiology 148 793-798

Larkin, MJ, Kulakov LA & Allen CCR 2010 Genomes and Plasmids in Rhodococcus. In: H.M. Alvarez (ed) Biology of Rhodococcus. Microbiology Monographs Series. Springer Verlag, Heidelberg, Germany. pp 73-90

Letek M, González P, Macarthur I, Rodríguez H, Freeman TC, Valero-Rello A, Blanco M, Buckley T, Cherevach I, Fahey R, Hapeshi A, Holdstock J, Leadon D, Navas J, Ocampo A, Quail MA, Sanders M, Scortti MM, Prescott JF, Fogarty U, Meijer WG, Parkhill J, Bentley SD & Vázquez-Boland JA 2010 The genome of a pathogenic Rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet 6(9) e1001145

Luz AP, Pellizari VH, Whyte LG & Greer CW 2004 A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can J Microbiol 50 323-333

MacEachran DP, Prophete ME & Sinskey AJ 2010 The Rhodococcus opacus PD630 heparin-binding hemagglutinin homolog TadA mediates lipid body formation. Appl Environ Microbiol 76 7217-7225

Makula RA, Lockwood PJ & Finnerty WR 1975 Comparative analysis of lipids of Acinetobacter species grown on hexadecane. J Bacteriol 121 250–258

Olukoshi ER & Packter NM 1994 Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology 140 931–943

Packter NM & Olukoshi ER 1995 Ultrastructural studies of neutral lipid localisation in Streptomyces. Arch Microbiol 164 420-427

Peng F, Wang Y, Sun F, Liu Z, Lai Q & Shao Z 2008 A novel lipopeptide produced by a Pacific Ocean deep-sea bacterium, Rhodococcus sp. TW53. J Appl Microbiol 105 698-705

Peressutti SR, Alvarez HM & Pucci OH 2003 Dynamic of hydrocarbon-degrading bacteriocenosis of an experimental oil pollution on patagonic soil. Intern Biodeter & Biodeg 52 21-30

Petersen TN, Brunak S, von Heijne G & Nielsen H 2011 SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 8 785-786

Pieper U & Steinbüchel A 1992 Identification, cloning and sequence analysis of the poly(3-hydroxyalkanoic acid) synthase gene of the Gram-positive bacterium Rhodococcus ruber. FEMS Microbiol Lett 96 73-80

Ruiz C, Pastor FI & Diaz P 2005 Isolation of lipid- and polysaccharide-degrading micro-organisms from subtropical forest soil, and analysis of lipolytic strain Bacillus sp. CR-179. Lett Appl Microbiol 40 218-227

Silva RA, Grossi V & Alvarez HM 2007 Biodegradation of phytane (2,6,10,14-tetramethylhexadecane) and accumulation of related isoprenoid wax esters by Mycobacterium ratisbonense strain SD4 under nitrogen-starved conditions. FEMS Microbiol Lett 272 220-228

Silva RA, Grossi V, Olivera N & Alvarez HM 2010 Characterization of the indigenous Rhodococcus sp. 602, a strain able to accumulate triacylglycerides from naphthyl-compounds under nitrogen-starved conditions. Res Microbiol 161 198-207

Steinbüchel A 1991 Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials. MacMillan, London, pp 123–213

Steinbüchel A & Valentin HE 1995 Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128 219-228

Stöveken T & Steinbüchel A 2008 Bacterial acyltransferases as an alternative for lipase-catalyzed acylation for the production of oleochemicals and fuels. Angew Chem Int Ed 47 3688-3694

Voss I & Steinbüchel A 2001 High cell density cultivation of Rhodococcus opacus for lipid production at a pilot scale. Appl Microbiol Biotechnol 55 547–555

Wältermann M, Stöveken T & Steinbüchel A 2007 Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: Properties, function and occurrence of wax ester synthases/acyl-CoA:diacylglycerol acyltransferases. Biochimie 89 230–242

Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE & Greer CHW 1998 Biodegradation of variable-chain length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64 2578–2584

Zimhony O, Vilchèze C & Jacobs WR Jr 2004 Characterization of Mycobacterium smegmatis expressing the Mycobacterium tuberculosis fatty acid synthase I (fas1) gene. J Bacteriol 186 4051-4055

Full Text: PDF


  • There are currently no refbacks.

Copyright © 2018 Lorem Ipsum Press